Skip to main content

Research Repository

Advanced Search

Adam Leach's Outputs (3)

Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment (2022)
Presentation / Conference Contribution
Leach, A., Schmon, S. M., Degiacomi, M. T., & Willcocks, C. G. (2022). Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment.

Probabilistic diffusion models are capable of modeling complex data distributions on high-dimensional Euclidean spaces for a range applications. However, many real world tasks involve more complex structures such as data distributions defined on mani... Read More about Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment.

AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise (2022)
Presentation / Conference Contribution
Wyatt, J., Leach, A., Schmon, S. M., & Willcocks, C. G. (2022). AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise. . https://doi.org/10.1109/cvprw56347.2022.00080

Generative models have been shown to provide a powerful mechanism for anomaly detection by learning to model healthy or normal reference data which can subsequently be used as a baseline for scoring anomalies. In this work we consider denoising diffu... Read More about AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise.

Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models (2021)
Journal Article
Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2021). Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327-7347. https://doi.org/10.1109/tpami.2021.3116668

Deep generative models are a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which make trade-offs including run-time, diversit... Read More about Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models.