Skip to main content

Research Repository

Advanced Search

Professor Philip Gaskell's Outputs (27)

Modelling the flow of droplets of bio-pesticide on foliage (2014)
Journal Article
Veremieiev, S., Brown, A., Gaskell, P., Glass, C., Kapur, N., & Thompson, H. (2014). Modelling the flow of droplets of bio-pesticide on foliage. Interfacial phenomena and heat transfer, 2(1), 1-14. https://doi.org/10.1615/interfacphenomheattransfer.2014010162

The flow of droplets of bio-pesticide, liquid laden with entomapathogenic nematodes (EPNs), over foliage approximated as a planar substrate is investigated theoretically via a simple analytical model and computationally by solving a subset of the Nav... Read More about Modelling the flow of droplets of bio-pesticide on foliage.

Gravity-driven thin film flow: The influence of topography and surface tension gradient on rivulet formation (2012)
Journal Article
Slade, D., Veremieiev, S., Lee, Y., & Gaskell, P. (2013). Gravity-driven thin film flow: The influence of topography and surface tension gradient on rivulet formation. Chemical Engineering and Processing: Process Intensification, 68, 7-12. https://doi.org/10.1016/j.cep.2012.07.003

The evolution of an advancing fluid front formed by a gravity-driven thin film flowing down a planar substrate is considered, with particular reference to the presence of Marangoni stresses and/or surface topography. The system is modelled using lubr... Read More about Gravity-driven thin film flow: The influence of topography and surface tension gradient on rivulet formation.

Electrified thin film flow at finite Reynolds number on planar substrates featuring topography (2012)
Journal Article
Veremieiev, S., Thompson, H., Scholle, M., Lee, Y., & Gaskell, P. (2012). Electrified thin film flow at finite Reynolds number on planar substrates featuring topography. International Journal of Multiphase Flow, 44, 48-69. https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.010

The flow of a gravity-driven thin liquid film over a substrate containing topography, in the presence of a normal electric field, is investigated. The liquid is assumed to be a perfect conductor and the air above it a perfect dielectric. Of particula... Read More about Electrified thin film flow at finite Reynolds number on planar substrates featuring topography.

Inertial two- and three-dimensional thin film flow over topography (2010)
Journal Article
Veremieiev, S., Thompson, H., Lee, Y., & Gaskell, P. (2011). Inertial two- and three-dimensional thin film flow over topography. Chemical Engineering and Processing: Process Intensification, 50(5-6), 537-542. https://doi.org/10.1016/j.cep.2010.08.008

The effect of inertia on gravity-driven thin film free-surface flow over substrates containing topography is considered. Flow is modelled using a depth-averaged form of the governing Navier–Stokes equations and the discrete analogue of the coupled eq... Read More about Inertial two- and three-dimensional thin film flow over topography.

Inertial thin film flow on planar surfaces featuring topography (2009)
Journal Article
Veremieiev, S., Thompson, H., Lee, Y., & Gaskell, P. (2010). Inertial thin film flow on planar surfaces featuring topography. Computers and Fluids, 39(3), 431-450. https://doi.org/10.1016/j.compfluid.2009.09.007

A range of problems is investigated, involving the gravity-driven inertial flow of a thin viscous liquid film over an inclined planar surface containing topographical features, modelled via a depth-averaged form of the governing unsteady Navier–Stoke... Read More about Inertial thin film flow on planar surfaces featuring topography.