Skip to main content

Research Repository

Advanced Search

Professor Herbert Gangl's Outputs (18)

On two conjectures of Sun concerning Apéry-like series (2023)
Journal Article
Charlton, S., Gangl, H., Lai, L., Xu, C., & Zhao, J. (2023). On two conjectures of Sun concerning Apéry-like series. Forum Mathematicum, 35(6), 1533-1547. https://doi.org/10.1515/forum-2022-0325

We prove two conjectural identities of Z.-W. Sun concerning Apéry-like series. One of the series is alternating, whereas the other one is not. Our main strategy is to convert the series and the alternating series to log-sine-cosine and log-sinh-cosh... Read More about On two conjectures of Sun concerning Apéry-like series.

On functional equations for Nielsen polylogarithms (2021)
Journal Article
Charlton, S., Gangl, H., & Radchenko, D. (2021). On functional equations for Nielsen polylogarithms. Communications in Number Theory and Physics, 15(2), 363-454. https://doi.org/10.4310/cntp.2021.v15.n2.a4

We derive new functional equations for Nielsen polylogarithms. We show that, when viewed moduloLi5 and products of lower weight functions, the weight 5 Nielsen polylogarithm S3,2 satisfies the dilogarithm five-term relation. We also give some functio... Read More about On functional equations for Nielsen polylogarithms.

Hyperbolic tessellations and generators of K₃ for imaginary quadratic fields (2021)
Journal Article
Burns, D., de Jeu, R., Gangl, H., Rahm, A. D., & Yasaki, D. (2021). Hyperbolic tessellations and generators of K₃ for imaginary quadratic fields. Forum of Mathematics, Sigma, 9, Article e40. https://doi.org/10.1017/fms.2021.9

We develop methods for constructing explicit generators, modulo torsion, of the K₃ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic 3 -space or on direct calculations in suitable pre-Bloch gr... Read More about Hyperbolic tessellations and generators of K₃ for imaginary quadratic fields.

On the topological computation of K_4 of the Gaussian and Eisenstein integers (2018)
Journal Article
Gangl, H., Dutour Sikiriˇc, M., Gunnells, P., Hanke, J., Schuermann, A., & Yasaki, D. (2019). On the topological computation of K_4 of the Gaussian and Eisenstein integers. Journal of Homotopy and Related Structures, 14, 281-291. https://doi.org/10.1007/s40062-018-0212-8

In this paper we use topological tools to investigate the structure of the algebraic K-groups K4(R) for R=Z[i] and R=Z[ρ] where i:=−1−−−√ and ρ:=(1+−3−−−√)/2. We exploit the close connection between homology groups of GLn(R) for n≤5 and those of rela... Read More about On the topological computation of K_4 of the Gaussian and Eisenstein integers.

On the cohomology of linear groups over imaginary quadratic fields (2016)
Journal Article
Dutour Sikirić, M., Gangl, H., Gunnells, P. E., Hanke, J., Schürmann, A., & Yasaki, D. (2016). On the cohomology of linear groups over imaginary quadratic fields. Journal of Pure and Applied Algebra, 220(7), 2564-2589. https://doi.org/10.1016/j.jpaa.2015.12.002

Let Γ be the group GLN(OD), where OD is the ring of integers in the imaginary quadratic field with discriminant D<0. In this paper we investigate the cohomology of Γ for N=3,4 and for a selection of discriminants: D≥−24 when N=3, and D=−3,−4 when N=4...

Generators and Relations for K_2 O_F (2004)
Journal Article
Belabas, K., & Gangl, H. (2004). Generators and Relations for K_2 O_F. K-Theory, 31(3), 195 - 231. https://doi.org/10.1023/b%3Akthe.0000028979.91416.00

Tate's algorithm for computing K_2 O_F for rings of integers in a number field has been adapted for the computer and gives explicit generators for the group and sharp bounds on their order---the latter, together with some structural results on the p-... Read More about Generators and Relations for K_2 O_F.

Functional equations for higher logarithms (2003)
Journal Article
Gangl, H. (2003). Functional equations for higher logarithms. Selecta Mathematica (New Series), 9(3), 361 - 377. https://doi.org/10.1007/s00029-003-0312-z

Following earlier work by Abel and others, Kummer gave in 1840 functional equations for the polylogarithm function Li_m(z) up to m = 5, but no example for larger m was known until recently. We give the first genuine 2-variable functional equation for... Read More about Functional equations for higher logarithms.

On poly(ana)logs I (2002)
Journal Article
Elbaz-Vincent, P., & Gangl, H. (2002). On poly(ana)logs I. Compositio Mathematica, 130(2), 161-214. https://doi.org/10.1023/a%3A1013757217319

We investigate a connection between the differential of polylogarithms (as considered by Cathelineau) and a finite variant of them. This allows to answer a question raised by Kontsevich concerning the construction of functional equations for the fini... Read More about On poly(ana)logs I.