Ph Elbaz-Vincent
Quelques calculs de la cohomologie de GL_N(Z) et de la K-theorie de Z
Elbaz-Vincent, Ph; Gangl, H.; Soulé, C.
Abstract
Voronoi cell decomposition is used to determine most of the structure of the homology of GL_N(Z) for N=5, 6. This determines K_5(Z) and gives that K_6(Z) is a 3-group.
Citation
Elbaz-Vincent, P., Gangl, H., & Soulé, C. (2002). Quelques calculs de la cohomologie de GL_N(Z) et de la K-theorie de Z. Comptes Rendus Mathématique, 335(4), 321-324. https://doi.org/10.1016/s1631-073x%2802%2902481-0
Journal Article Type | Article |
---|---|
Publication Date | 2002-07 |
Journal | Comptes Rendus Mathématique |
Print ISSN | 1631-073X |
Electronic ISSN | 1778-3569 |
Publisher | French Academy of Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 335 |
Issue | 4 |
Pages | 321-324 |
DOI | https://doi.org/10.1016/s1631-073x%2802%2902481-0 |
Public URL | https://durham-repository.worktribe.com/output/1579088 |
You might also like
On two conjectures of Sun concerning Apéry-like series
(2023)
Journal Article
On functional equations for Nielsen polylogarithms
(2021)
Journal Article
Homophonic quotients of linguistic free groups: German, Korean, and Turkish
(2018)
Journal Article
On the topological computation of K_4 of the Gaussian and Eisenstein integers
(2018)
Journal Article
Functional equations and ladders for polylogarithms
(2013)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search