Skip to main content

Research Repository

Advanced Search

Dr Johannes Kroon's Outputs (2)

A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis (2019)
Journal Article
Smit, M., McGregor, S., Sun, H., Gough, C., Bågman, A.-M., Soyars, C., Kroon, J., Gaudinier, A., Williams, C., Yang, X., Nimchuk, Z., Weijers, D., Turner, S., Brady, S., & Etchells, J. (2020). A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis. The Plant Cell, 32, 319-335. https://doi.org/10.1105/tpc.19.00562

Vascular meristems generate the majority of biomass in higher plants. They constitute a bifacial stem cell population from which xylem and phloem are specified on opposing sides by positional signals. The PHLOEM INTERCALATED WITH XYLEM (PXY) receptor... Read More about A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis.

Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue (2019)
Journal Article
Wang, N., Bagdassarian, K., Doherty, R., Kroon, J., Connor, K., Wang, X., Wang, W., Jermyn, I., Turner, S., & Etchells, J. (2019). Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development, 146(10), Article 177105. https://doi.org/10.1242/dev.177105

In plants, cells do not migrate. Tissues are frequently arranged in concentric rings, thus expansion of inner layers is coordinated with cell division and/or expansion of cells in outer layers. In Arabidopsis stems, receptor kinases, PXY and ER, gene... Read More about Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue.