Capturing Fairness and Uncertainty in Student Dropout Prediction – A Comparison Study
(2021)
Book Chapter
Drousiotis, E., Pentaliotis, P., Shi, L., & Cristea, A. I. (2021). Capturing Fairness and Uncertainty in Student Dropout Prediction – A Comparison Study. In I. Roll, D. McNamara, S. Sosnovsky, R. Luckin, & V. Dimitrova (Eds.), Artificial Intelligence in Education (139-144). Springer, Cham. https://doi.org/10.1007/978-3-030-78270-2_25
This study aims to explore and improve ways of handling a continuous variable dataset, in order to predict student dropout in MOOCs, by implementing various models, including the ones most successful across various domains, such as recurrent neural n... Read More about Capturing Fairness and Uncertainty in Student Dropout Prediction – A Comparison Study.