Skip to main content

Research Repository

Advanced Search

All Outputs (44)

Sim-GAIL: A generative adversarial imitation learning approach of student modelling for intelligent tutoring systems (2023)
Journal Article
Li, Z., Shi, L., Wang, J., Cristea, A. I., & Zhou, Y. (2023). Sim-GAIL: A generative adversarial imitation learning approach of student modelling for intelligent tutoring systems. Neural Computing and Applications, 35(34), 24369-24388. https://doi.org/10.1007/s00521-023-08989-w

The continuous application of artificial intelligence (AI) technologies in online education has led to significant progress, especially in the field of Intelligent Tutoring Systems (ITS), online courses and learning management systems (LMS). An impor... Read More about Sim-GAIL: A generative adversarial imitation learning approach of student modelling for intelligent tutoring systems.

Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation (2023)
Journal Article
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2023). Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation. AI open, 4, 19-32. https://doi.org/10.1016/j.aiopen.2023.05.001

This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence... Read More about Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation.

PICA-PICA: Exploring a Customisable Smart STEAM Educational Approach via a Smooth Combination of Programming, Engineering and Art (2023)
Presentation / Conference Contribution
Nagai, T., Klem, S., Kayama, M., Asuke, T., Meccawy, M., Wang, J., …Shi, L. (2023). PICA-PICA: Exploring a Customisable Smart STEAM Educational Approach via a Smooth Combination of Programming, Engineering and Art. . https://doi.org/10.1109/educon54358.2023.10125184

The STEAM approach in education has been gaining increasing popularity over the last decade. This is due to its potential in enhancing students' learning, when teaching arts and scientific disciplines together. This paper introduces the PICA-PICA con... Read More about PICA-PICA: Exploring a Customisable Smart STEAM Educational Approach via a Smooth Combination of Programming, Engineering and Art.

Is Unimodal Bias Always Bad for Visual Question Answering? A Medical Domain Study with Dynamic Attention (2022)
Presentation / Conference Contribution
Sun, Z., Harit, A., Cristea, A. I., Yu, J., Al Moubayed, N., & Shi, L. (2022). Is Unimodal Bias Always Bad for Visual Question Answering? A Medical Domain Study with Dynamic Attention. . https://doi.org/10.1109/bigdata55660.2022.10020791

Medical visual question answering (Med-VQA) is to answer medical questions based on clinical images provided. This field is still in its infancy due to the complexity of the trio formed of questions, multimodal features and expert knowledge. In this... Read More about Is Unimodal Bias Always Bad for Visual Question Answering? A Medical Domain Study with Dynamic Attention.

Efficient Uncertainty Quantification for Multilabel Text Classification (2022)
Presentation / Conference Contribution
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2022). Efficient Uncertainty Quantification for Multilabel Text Classification. . https://doi.org/10.1109/ijcnn55064.2022.9892871

Despite rapid advances of modern artificial intelligence (AI), there is a growing concern regarding its capacity to be explainable, transparent, and accountable. One crucial step towards such AI systems involves reliable and efficient uncertainty qua... Read More about Efficient Uncertainty Quantification for Multilabel Text Classification.

Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification (2022)
Presentation / Conference Contribution
Sun, Z., Harit, A., Cristea, A. I., Yu, J., Shi, L., & Al Moubayed, N. (2022). Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification. . https://doi.org/10.1109/ijcnn55064.2022.9892257

Graph neural networks (GNNs) have attracted extensive interest in text classification tasks due to their expected superior performance in representation learning. However, most existing studies adopted the same semi-supervised learning setting as the... Read More about Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification.

INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations (2022)
Presentation / Conference Contribution
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Al Moubayed, N. (2022). INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. . https://doi.org/10.1109/ijcnn55064.2022.9892336

XAI with natural language processing aims to produce human-readable explanations as evidence for AI decisionmaking, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a s... Read More about INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations.

Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews (2022)
Book Chapter
Xiao, C., Shi, L., Cristea, A., Li, Z., & Pan, Z. (2022). Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews. In M. Rodrigo, N. Matsuda, A. Cristea, & V. Dimitrova (Eds.), Artificial Intelligence in Education (294-306). Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_24

Online course reviews have been an essential way in which course providers could get insights into students’ perceptions about the course quality, especially in the context of massive open online courses (MOOCs), where it is hard for both parties to... Read More about Fine-grained Main Ideas Extraction and Clustering of Online Course Reviews.

Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data (2022)
Book Chapter
Drousiotis, E., Pentaliotis, P., Shi, L., & Cristea, A. I. (2022). Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data. In Artificial Intelligence in Education (256-268). Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_21

Along with the exponential increase of students enrolling in MOOCs [26] arises the problem of a high student dropout rate. Researchers worldwide are interested in predicting whether students will drop out of MOOCs to prevent it. This study explores a... Read More about Balancing Fined-Tuned Machine Learning Models Between Continuous and Discrete Variables - A Comprehensive Analysis Using Educational Data.

SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour (2022)
Book Chapter
Li, Z., Shi, L., Cristea, A., Zhou, Y., Xiao, C., & Pan, Z. (2022). SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour. In Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium (348-351). Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_67

Lacking behavioural data between students and an Intelligent Tutoring System (ITS) has been an obstacle for improving its personalisation capability. One feasible solution is to train “sim students”, who simulate real students’ behaviour in the ITS.... Read More about SimStu-Transformer: A Transformer-Based Approach to Simulating Student Behaviour.

Tailored gamification in education: A literature review and future agenda (2022)
Journal Article
Oliveira, W., Hamari, J., Shi, L., Toda, A. M., Rodrigues, L., Palomino, P. T., & Isotani, S. (2023). Tailored gamification in education: A literature review and future agenda. Education and Information Technologies, 28(1), 373-406. https://doi.org/10.1007/s10639-022-11122-4

Gamification has been widely used to design better educational systems aiming to increase students’ concentration, motivation, engagement, flow experience, and others positive experiences. With advances in research on gamification in education, over... Read More about Tailored gamification in education: A literature review and future agenda.

Novel Decision Forest Building Techniques by Utilising Correlation Coefficient Methods (2022)
Book Chapter
Drousiotis, E., Shi, L., Spirakis, P. G., & Maskell, S. (2022). Novel Decision Forest Building Techniques by Utilising Correlation Coefficient Methods. In L. Iliadis, C. Jayne, A. Tefas, & E. Pimenidis (Eds.), Engineering Applications of Neural Networks: 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings (90-102). Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_8

Decision Forests have attracted the academic community’s interest mainly due to their simplicity and transparency. This paper proposes two novel decision forest building techniques, called Maximal Information Coefficient Forest (MICF) and Pearson’s C... Read More about Novel Decision Forest Building Techniques by Utilising Correlation Coefficient Methods.

AI‐driven user aesthetics preference prediction for UI layouts via deep convolutional neural networks (2022)
Journal Article
Xing, B., Cao, H., Shi, L., Si, H., & Zhao, L. (2022). AI‐driven user aesthetics preference prediction for UI layouts via deep convolutional neural networks. Cognitive Computation and Systems, 4(3), 250-264. https://doi.org/10.1049/ccs2.12055

Leveraging the power of computational methods, AI can perform effective strategies in intelligent design. Researchers are pushing the boundaries of AI, developing computational systems to solve complex questions. The authors investigate the associati... Read More about AI‐driven user aesthetics preference prediction for UI layouts via deep convolutional neural networks.

A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs (2021)
Presentation / Conference Contribution
Sun, Z., Harit, A., Yu, J., Cristea, A. I., & Shi, L. (2021, June). A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

Massive Open Online Course (MOOC) systems have become prevalent in recent years and draw more attention, a.o., due to the coronavirus pandemic’s impact. However, there is a well-known higher chance of dropout from MOOCs than from conventional off-lin... Read More about A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs.

Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums (2021)
Presentation / Conference Contribution
Yu, J., Alrajhi, L., Harit, A., Sun, Z., Cristea, A. I., & Shi, L. (2021, June). Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility. However, due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support. Learners may post the... Read More about Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums.

Early Predictor for Student Success Based on Behavioural and Demographical Indicators (2021)
Presentation / Conference Contribution
Drousiotis, E., Shi, L., Maskell, S., Cristea, A. I., & Troussas, C. (2021, December). Early Predictor for Student Success Based on Behavioural and Demographical Indicators. Presented at International Conference on Intelligent Tutoring Systems 2021

As the largest distance learning university in the UK, the Open University has more than 250,000 students enrolled, making it also the largest academic institute in the UK. However, many students end up failing or withdrawing from online courses, whi... Read More about Early Predictor for Student Success Based on Behavioural and Demographical Indicators.

Wide-Scale Automatic Analysis of 20 Years of ITS Research (2021)
Presentation / Conference Contribution
Hodgson, R., Cristea, A., Shi, L., & Graham, J. (2021, June). Wide-Scale Automatic Analysis of 20 Years of ITS Research. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

The analysis of literature within a research domain can provide significant value during preliminary research. While literature reviews may provide an in-depth understanding of current studies within an area, they are limited by the number of studies... Read More about Wide-Scale Automatic Analysis of 20 Years of ITS Research.

Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students (2021)
Presentation / Conference Contribution
Alharbi, K., Cristea, A. I., Shi, L., Tymms, P., & Brown, C. (2021, June). Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students. Presented at Intelligent Tutoring Systems, Athens, Greece / Virtual

The classroom environment is a major contributor to the learning process in schools. Young students are affected by different details in their academic progress, be it their own characteristics, their teacher’s or their peers’. The combination of the... Read More about Agent-based Simulation of the Classroom Environment to Gauge the Effect of Inattentive or Disruptive Students.

A Survey of Collaborative Reinforcement Learning: Interactive Methods and Design Patterns (2021)
Presentation / Conference Contribution
Li, Z., Shi, L., Cristea, A. I., & Zhou, Y. (2021). A Survey of Collaborative Reinforcement Learning: Interactive Methods and Design Patterns. . https://doi.org/10.1145/3461778.3462135

Recently, methods enabling humans and Artificial Intelligent (AI) agents to collaborate towards improving the efficiency of Reinforcement Learning - also called Collaborative Reinforcement Learning (CRL) - have been receiving increasing attention. In... Read More about A Survey of Collaborative Reinforcement Learning: Interactive Methods and Design Patterns.