Dr Katie Gittins katie.gittins@durham.ac.uk
Associate Professor
Dr Katie Gittins katie.gittins@durham.ac.uk
Associate Professor
Asma Hassannezhad
Corentin Léna
David Sher
Gittins, K., Hassannezhad, A., Léna, C., & Sher, D. (in press). Nodal counts for the Robin problem on Lipschitz domains. Pure and Applied Functional Analysis,
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 3, 2025 |
Deposit Date | Apr 11, 2025 |
Journal | Pure and Applied Functional Analysis |
Print ISSN | 2189-3756 |
Electronic ISSN | 2189-3764 |
Peer Reviewed | Peer Reviewed |
Public URL | https://durham-repository.worktribe.com/output/3786450 |
Publisher URL | http://www.ybook.co.jp/pafa.html |
This file is under embargo due to copyright reasons.
Spectral ratios and gaps for Steklov eigenvalues of balls with revolution-type metrics
(2025)
Journal Article
Do the Hodge spectra distinguish orbifolds from manifolds? Part 2
(2024)
Journal Article
Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms
(2023)
Journal Article
Heat Flow in Polygons with Reflecting Edges
(2023)
Journal Article
Do the Hodge spectra distinguish orbifolds from manifolds? Part 1
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search