Linus Seelinger
Democratizing Uncertainty Quantification
Seelinger, Linus; Reinarz, Anne; Lykkegaard, Mikkel B.; Akers, Robert; Alghamdi, Amal M.A.; Aristoff, David; Bangerth, Wolfgang; Bénézech, Jean; Diez, Matteo; Frey, Kurt; Jakeman, John D.; Jørgensen, Jakob S.; Kim, Ki-Tae; Kent, Benjamin M.; Martinelli, Massimiliano; Parno, Matthew; Pellegrini, Riccardo; Petra, Noemi; Riis, Nicolai A.B.; Rosenfeld, Katherine; Serani, Andrea; Tamellini, Lorenzo; Villa, Umberto; Dodwell, Tim J.; Scheichl, Robert
Authors
Dr Anne Reinarz anne.k.reinarz@durham.ac.uk
Associate Professor
Mikkel B. Lykkegaard
Robert Akers
Amal M.A. Alghamdi
David Aristoff
Wolfgang Bangerth
Jean Bénézech
Matteo Diez
Kurt Frey
John D. Jakeman
Jakob S. Jørgensen
Ki-Tae Kim
Benjamin M. Kent
Massimiliano Martinelli
Matthew Parno
Riccardo Pellegrini
Noemi Petra
Nicolai A.B. Riis
Katherine Rosenfeld
Andrea Serani
Lorenzo Tamellini
Umberto Villa
Tim J. Dodwell
Robert Scheichl
Abstract
Uncertainty Quantification (UQ) is vital to safety-critical model-based analyses, but the widespread adoption of sophisticated UQ methods is limited by technical complexity. In this paper, we introduce UM-Bridge (the UQ and Modeling Bridge), a high-level abstraction and software protocol that facilitates universal interoperability of UQ software with simulation codes. It breaks down the technical complexity of advanced UQ applications and enables separation of concerns between experts. UM-Bridge democratizes UQ by allowing effective interdisciplinary collaboration, accelerating the development of advanced UQ methods, and making it easy to perform UQ analyses from prototype to High Performance Computing (HPC) scale. In addition, we present a library of ready-to-run UQ benchmark problems, all easily accessible through UM-Bridge. These benchmarks support UQ methodology research, enabling reproducible performance comparisons. We demonstrate UM-Bridge with several scientific applications, harnessing HPC resources even using UQ codes not designed with HPC support.
Citation
Seelinger, L., Reinarz, A., Lykkegaard, M. B., Akers, R., Alghamdi, A. M., Aristoff, D., Bangerth, W., Bénézech, J., Diez, M., Frey, K., Jakeman, J. D., Jørgensen, J. S., Kim, K.-T., Kent, B. M., Martinelli, M., Parno, M., Pellegrini, R., Petra, N., Riis, N. A., Rosenfeld, K., …Scheichl, R. (2025). Democratizing Uncertainty Quantification. Journal of Computational Physics, 521(1), Article 113542. https://doi.org/10.1016/j.jcp.2024.113542
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 25, 2024 |
Online Publication Date | Nov 7, 2024 |
Publication Date | Jan 15, 2025 |
Deposit Date | Nov 7, 2024 |
Publicly Available Date | Nov 7, 2024 |
Journal | Journal of Computational Physics |
Print ISSN | 0021-9991 |
Electronic ISSN | 1090-2716 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 521 |
Issue | 1 |
Article Number | 113542 |
DOI | https://doi.org/10.1016/j.jcp.2024.113542 |
Public URL | https://durham-repository.worktribe.com/output/2994533 |
Files
Published Journal Article
(3.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
UM-Bridge: Uncertainty quantification and modeling bridge
(2023)
Journal Article
ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search