Skip to main content

Research Repository

Advanced Search

Democratizing Uncertainty Quantification

Seelinger, Linus; Reinarz, Anne; Lykkegaard, Mikkel B.; Akers, Robert; Alghamdi, Amal M.A.; Aristoff, David; Bangerth, Wolfgang; Bénézech, Jean; Diez, Matteo; Frey, Kurt; Jakeman, John D.; Jørgensen, Jakob S.; Kim, Ki-Tae; Kent, Benjamin M.; Martinelli, Massimiliano; Parno, Matthew; Pellegrini, Riccardo; Petra, Noemi; Riis, Nicolai A.B.; Rosenfeld, Katherine; Serani, Andrea; Tamellini, Lorenzo; Villa, Umberto; Dodwell, Tim J.; Scheichl, Robert

Democratizing Uncertainty Quantification Thumbnail


Authors

Linus Seelinger

Mikkel B. Lykkegaard

Robert Akers

Amal M.A. Alghamdi

David Aristoff

Wolfgang Bangerth

Jean Bénézech

Matteo Diez

Kurt Frey

John D. Jakeman

Jakob S. Jørgensen

Ki-Tae Kim

Benjamin M. Kent

Massimiliano Martinelli

Matthew Parno

Riccardo Pellegrini

Noemi Petra

Nicolai A.B. Riis

Katherine Rosenfeld

Andrea Serani

Lorenzo Tamellini

Umberto Villa

Tim J. Dodwell

Robert Scheichl



Abstract

Uncertainty Quantification (UQ) is vital to safety-critical model-based analyses, but the widespread adoption of sophisticated UQ methods is limited by technical complexity. In this paper, we introduce UM-Bridge (the UQ and Modeling Bridge), a high-level abstraction and software protocol that facilitates universal interoperability of UQ software with simulation codes. It breaks down the technical complexity of advanced UQ applications and enables separation of concerns between experts. UM-Bridge democratizes UQ by allowing effective interdisciplinary collaboration, accelerating the development of advanced UQ methods, and making it easy to perform UQ analyses from prototype to High Performance Computing (HPC) scale. In addition, we present a library of ready-to-run UQ benchmark problems, all easily accessible through UM-Bridge. These benchmarks support UQ methodology research, enabling reproducible performance comparisons. We demonstrate UM-Bridge with several scientific applications, harnessing HPC resources even using UQ codes not designed with HPC support.

Citation

Seelinger, L., Reinarz, A., Lykkegaard, M. B., Akers, R., Alghamdi, A. M., Aristoff, D., Bangerth, W., Bénézech, J., Diez, M., Frey, K., Jakeman, J. D., Jørgensen, J. S., Kim, K.-T., Kent, B. M., Martinelli, M., Parno, M., Pellegrini, R., Petra, N., Riis, N. A., Rosenfeld, K., …Scheichl, R. (2025). Democratizing Uncertainty Quantification. Journal of Computational Physics, 521(1), Article 113542. https://doi.org/10.1016/j.jcp.2024.113542

Journal Article Type Article
Acceptance Date Oct 25, 2024
Online Publication Date Nov 7, 2024
Publication Date Jan 15, 2025
Deposit Date Nov 7, 2024
Publicly Available Date Nov 7, 2024
Journal Journal of Computational Physics
Print ISSN 0021-9991
Electronic ISSN 1090-2716
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 521
Issue 1
Article Number 113542
DOI https://doi.org/10.1016/j.jcp.2024.113542
Public URL https://durham-repository.worktribe.com/output/2994533

Files





You might also like



Downloadable Citations