Hongxiang Chen
Estimation of line-of-sight velocities of individual galaxies using neural networks – I. Modelling redshift–space distortions at large scales
Chen, Hongxiang; Wang, Jie; Mao, Tianxiang; Ma, Juntao; Meng, Yuxi; Li, Baojiu; Cai, Yan-Chuan; Neyrinck, Mark; Falck, Bridget; Szalay, Alexander S
Authors
Jie Wang
Tianxiang Mao
Juntao Ma
Yuxi Meng
Professor Baojiu Li baojiu.li@durham.ac.uk
Professor
Yan-Chuan Cai
Mark Neyrinck
Bridget Falck
Alexander S Szalay
Citation
Chen, H., Wang, J., Mao, T., Ma, J., Meng, Y., Li, B., Cai, Y.-C., Neyrinck, M., Falck, B., & Szalay, A. S. (2024). Estimation of line-of-sight velocities of individual galaxies using neural networks – I. Modelling redshift–space distortions at large scales. Monthly Notices of the Royal Astronomical Society, 532(4), 3947-3960. https://doi.org/10.1093/mnras/stae1682
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 2, 2024 |
Online Publication Date | Jul 10, 2024 |
Publication Date | 2024-08 |
Deposit Date | Sep 12, 2024 |
Publicly Available Date | Sep 12, 2024 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 532 |
Issue | 4 |
Pages | 3947-3960 |
DOI | https://doi.org/10.1093/mnras/stae1682 |
Public URL | https://durham-repository.worktribe.com/output/2861985 |
Files
Published Journal Article
(2.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search