Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
A three-dimensional multi-scale computational homogenisation framework is developed for the prediction of nonlinear micro/meso-mechanical response of the fibre-reinforced polymer (FRP) composites. Two dominant damage mechanisms, i.e. matrix elasto-plastic response and fibre–matrix decohesion are considered and modelled using a non-associative pressure dependent paraboloidal yield criterion and cohesive interface elements respectively. A linear-elastic transversely isotropic material model is used to model yarns/fibres within the representative volume element (RVE). A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The computational model is implemented within the framework of the hierarchic finite element, which permits the use of arbitrary orders of approximation. Furthermore, the computational framework is designed to take advantage of distributed memory high-performance computing. The accuracy and performance of the computational framework are demonstrated with a variety of numerical examples, including unidirectional FRP composite, a composite comprising a multi-fibre and multi-layer RVE, with randomly generated fibres, and a single layered plain weave textile composite. Results are validated against the reference experimental/numerical results from the literature. The computational framework is also used to study the effect of matrix and fibre–matrix interfaces properties on the homogenised stress–strain responses.
Ullah, Z., Kaczmarczyk, L., & Pearce, C. J. (2017). Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites. Composite Structures, 161, 204-214. https://doi.org/10.1016/j.compstruct.2016.11.059
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 16, 2016 |
Online Publication Date | Nov 19, 2016 |
Publication Date | Feb 1, 2017 |
Deposit Date | Sep 11, 2024 |
Journal | Composite Structures |
Print ISSN | 0263-8223 |
Electronic ISSN | 1879-1085 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 161 |
Pages | 204-214 |
DOI | https://doi.org/10.1016/j.compstruct.2016.11.059 |
Public URL | https://durham-repository.worktribe.com/output/2852167 |
Additional Information | This article is Open Access at: https://doi.org/10.1016/j.compstruct.2016.11.059 |
Overlapping improved element-free Galerkin and finite element methods for the solution of non-linear transient heat conduction problems with concentrated moving heat sources
(2024)
Presentation / Conference Contribution
Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
(2024)
Presentation / Conference Contribution
Finite fracture mechanics fracture criterion for free edge delamination
(2024)
Presentation / Conference Contribution
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search