Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
Ł. Kaczmarczyk
S.A. Grammatikos
M.C. Evernden
C.J. Pearce
A coupled hygro-thermo-mechanical computational model is proposed for fibre reinforced polymers, formulated within the framework of Computational Homogenisation (CH). At each macrostructure Gauss point, constitutive matrices for thermal, moisture transport and mechanical responses are calculated from CH of the underlying representative volume element (RVE). A degradation model, developed from experimental data relating evolution of mechanical properties over time for a given exposure temperature and moisture concentration is also developed and incorporated in the proposed computational model. A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear Dirichlet, uniform Neumann and periodic boundary conditions. A plain weave textile composite RVE consisting of yarns embedded in a matrix is considered in this case. Matrix and yarns are considered as isotropic and transversely isotropic materials respectively. Furthermore, the computational framework utilises hierarchic basis functions and designed to take advantage of distributed memory high performance computing.
Ullah, Z., Kaczmarczyk, Ł., Grammatikos, S., Evernden, M., & Pearce, C. (2017). Multi-scale computational homogenisation to predict the long-term durability of composite structures. Computers and Structures, 181, 21-31. https://doi.org/10.1016/j.compstruc.2016.11.002
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 1, 2016 |
Online Publication Date | Nov 14, 2016 |
Publication Date | 2017-03 |
Deposit Date | Sep 11, 2024 |
Journal | Computers and Structures |
Print ISSN | 0045-7949 |
Electronic ISSN | 1879-2243 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 181 |
Pages | 21-31 |
DOI | https://doi.org/10.1016/j.compstruc.2016.11.002 |
Public URL | https://durham-repository.worktribe.com/output/2852109 |
Overlapping improved element-free Galerkin and finite element methods for the solution of non-linear transient heat conduction problems with concentrated moving heat sources
(2024)
Presentation / Conference Contribution
Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
(2024)
Presentation / Conference Contribution
Finite fracture mechanics fracture criterion for free edge delamination
(2024)
Presentation / Conference Contribution
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search