Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
Hierarchical finite element-based multi-scale modelling of composite laminates
Ullah, Z.; Kaczmarczyk, Ł.; Zhou, X.-Y.; Falzon, B.G.; Pearce, C.J.
Authors
Ł. Kaczmarczyk
X.-Y. Zhou
B.G. Falzon
C.J. Pearce
Abstract
This paper presents a hierarchic finite element-based computational framework for the multi-scale modelling of composite laminates. Hierarchic finite elements allow changing the approximation order locally or globally without changing the underlying finite element mesh. Both micro- and macro-level structures are discretised with these elements. The macro-level structures of composite laminates are divided into several blocks during the pre-processing stage, and approximation orders are assigned to each block independently. Due to a sharp increase in the interlaminar stresses, higher approximation orders are used in the vicinity of free edges as compared to the rest of the problem domain. This freedom of assigning approximation orders independently to each block provides an efficient and accurate way for modelling composite laminates. The computation framework can either accept the user-defined ply-level homogenised elastic material properties or calculates these directly from the underlying representative volume element consisting of matrix and fibre using the computational homogenisation. The model developed for the computational homogenisation has the flexibility of unified imposition of representative volume element boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The computational framework has additional flexibly of high-performance computing and makes use of state-of-the-art computational libraries including Portable, Extensible Toolkit for Scientific Computation (PETSc) and the Mesh-Oriented datABase (MOAB). Symmetric cross-ply, angle-ply and quasi-isotropic laminates subjected to uniaxial loading are used as test cases to demonstrate the correct implementation and computational efficiency of the developed computational framework.
Citation
Ullah, Z., Kaczmarczyk, Ł., Zhou, X.-Y., Falzon, B., & Pearce, C. (2020). Hierarchical finite element-based multi-scale modelling of composite laminates. Composites Part B: Engineering, 201, Article 108321. https://doi.org/10.1016/j.compositesb.2020.108321
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 27, 2020 |
Online Publication Date | Aug 28, 2020 |
Publication Date | Nov 15, 2020 |
Deposit Date | Sep 11, 2024 |
Journal | Composites Part B: Engineering |
Print ISSN | 1359-8368 |
Electronic ISSN | 1879-1069 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 201 |
Article Number | 108321 |
DOI | https://doi.org/10.1016/j.compositesb.2020.108321 |
Public URL | https://durham-repository.worktribe.com/output/2852044 |
Related Public URLs | https://pure.qub.ac.uk/en/publications/hierarchical-finite-element-based-multi-scale-modelling-of-compos |
You might also like
Overlapping improved element-free Galerkin and finite element methods for the solution of non-linear transient heat conduction problems with concentrated moving heat sources
(2024)
Presentation / Conference Contribution
Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
(2024)
Presentation / Conference Contribution
Finite fracture mechanics fracture criterion for free edge delamination
(2024)
Presentation / Conference Contribution
A critical review on free edge delamination fracture criteria
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search