Chunyang Lai chunyang.lai@durham.ac.uk
Demonstrator (Ptt)
Chunyang Lai chunyang.lai@durham.ac.uk
Demonstrator (Ptt)
Dr Behzad Kazemtabrizi behzad.kazemtabrizi@durham.ac.uk
Associate Professor
Lai, C., & Kazemtabrizi, B. (2024). A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation. Applied Energy, 371, Article 123616. https://doi.org/10.1016/j.apenergy.2024.123616
Journal Article Type | Article |
---|---|
Acceptance Date | May 31, 2024 |
Online Publication Date | Jun 14, 2024 |
Publication Date | Oct 1, 2024 |
Deposit Date | Jun 6, 2024 |
Publicly Available Date | Jun 27, 2024 |
Journal | Applied Energy |
Print ISSN | 0306-2619 |
Electronic ISSN | 1872-9118 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 371 |
Article Number | 123616 |
DOI | https://doi.org/10.1016/j.apenergy.2024.123616 |
Public URL | https://durham-repository.worktribe.com/output/2474794 |
Ensure access to affordable, reliable, sustainable and modern energy for all
Accepted Journal Article
(7.1 Mb)
PDF
Data-driven estimation of the amount of under frequency load shedding in small power systems
(2024)
Journal Article
Statistical Evaluation of Wind Speed Forecast Models for Microgrid Distributed Control
(2022)
Journal Article
Inclusion of Frequency Stability Constraints in Unit Commitment Using Separable Programming
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search