Professor Anthony Yeates anthony.yeates@durham.ac.uk
Professor
The Sun’s Non-Potential Corona over Solar Cycle 24
Yeates, Anthony R.
Authors
Abstract
The global magnetic field in the solar corona is known to contain free magnetic energy and magnetic helicity above that of a current-free (potential) state. But the strength of this non-potentiality and its evolution over the solar cycle remain uncertain. Here we model the corona over Solar Cycle 24 using a simplified magneto-frictional model that retains the magnetohydrodynamic induction equation but assumes relaxation towards force-free equilibrium, driven by solar surface motions and flux emergence. The model is relatively conservative compared to some others in the literature, with free energy approximately 20 – 25% of the potential field energy. We find that unsigned helicity is about a factor 10 higher at Maximum than Minimum, while free magnetic energy shows an even greater increase. The cycle averages of these two quantities are linearly correlated, extending a result found previously for active regions. Also, we propose a practical measure of eruptivity for these simulations, and show that this increases concurrently with the sunspot number, in accordance with observed coronal mass ejection rates. Whilst shearing by surface motions generates 50% or more of the free energy and helicity in the corona, we show that active regions must emerge with their own internal helicity otherwise the eruptivity is substantially reduced and follows the wrong pattern over time.
Citation
Yeates, A. R. (2024). The Sun’s Non-Potential Corona over Solar Cycle 24. Solar Physics, 299(6), Article 83. https://doi.org/10.1007/s11207-024-02328-5
Journal Article Type | Article |
---|---|
Acceptance Date | May 23, 2024 |
Online Publication Date | Jun 17, 2024 |
Publication Date | Jun 1, 2024 |
Deposit Date | May 23, 2024 |
Publicly Available Date | Jun 1, 2024 |
Journal | Solar Physics |
Print ISSN | 0038-0938 |
Electronic ISSN | 1573-093X |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 299 |
Issue | 6 |
Article Number | 83 |
DOI | https://doi.org/10.1007/s11207-024-02328-5 |
Keywords | Helicity, Solar cycle, Corona, Magnetic fields, Models, Magnetic |
Public URL | https://durham-repository.worktribe.com/output/2456792 |
Files
Published Journal Article
(3.1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This accepted manuscript is licensed under the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/
You might also like
Spherical winding and helicity
(2023)
Journal Article
Automated driving for global non-potential simulations of the solar corona
(2022)
Journal Article
Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations
(2022)
Journal Article
Intrinsic winding of braided vector fields in tubular subdomains
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search