Laura Wainman
Utilising a multi-proxy to model comparison to constrain the season and regionally heterogeneous impacts of the Mt Samalas 1257 eruption
Wainman, Laura; Marshall, Lauren R.; Schmidt, Anja
Abstract
The Mt Samalas eruption, thought to have occurred in summer 1257, ranks as one of the most explosive sulfur-rich eruptions of the Common Era. Despite recent convergence, several dates have been proposed for the eruption ranging between 1256–1258, with, as of yet, no single combination of evidence that has been able to robustly distinguish between and exclude the other dates proposed for the Mt Samalas eruption. Widespread surface cooling and hydroclimate perturbations following the eruption have been invoked as contributing to a host of 13th century social and economic crises, although regional-scale variability in the post-eruption climate response remains uncertain. In this study we run ensemble simulations using the UK Earth System Model (UKESM1) with a range of eruption scenarios and initial conditions in order to compare our simulations with the most complete globally resolved multi-proxy database for the Mt Samalas eruption to date, incorporating tree rings, ice cores, and historical records. This allows more precise constraints to be placed on the year and season of the Mt Samalas eruption, as well as an investigation into the regionally heterogeneous post-eruption climate response. Using a multi-proxy to model comparison, we are able to robustly distinguish between July 1257 and January 1258 eruption scenarios, where the July 1257 ensemble simulation achieves considerably better agreement with spatially averaged and regionally resolved proxy surface temperature reconstructions. These reconstructions suggest the onset of significant cooling across Asia and Europe in 1258 and thus support the plausibility of previously inferred historical connections. Model-simulated temperature anomalies also point to severe surface cooling across the Southern Hemisphere with as of yet unexplored historical implications for impacted civilisations. Model simulations of polar sulfate deposition also reveal distinct differences in the timing of ice sheet deposition between the two simulated eruption dates, although comparison of the magnitude or asymmetric deposition of sulfate aerosol remains limited by large inter-model differences and complex intra-model dependencies. Overall, the multi-proxy to model comparison employed in this study has strong potential in constraining similar uncertainties in eruption source parameters for other historical eruptions for which sufficient coincident proxy records are available, although care is needed to avoid the pitfalls of model–multi-proxy comparison.
Citation
Wainman, L., Marshall, L. R., & Schmidt, A. (2024). Utilising a multi-proxy to model comparison to constrain the season and regionally heterogeneous impacts of the Mt Samalas 1257 eruption. Climate of the Past, 20(4), 951-968. https://doi.org/10.5194/cp-20-951-2024
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 29, 2024 |
Online Publication Date | Apr 16, 2024 |
Publication Date | Apr 16, 2024 |
Deposit Date | May 14, 2024 |
Publicly Available Date | May 14, 2024 |
Journal | Climate of the Past |
Print ISSN | 1814-9324 |
Electronic ISSN | 1814-9332 |
Publisher | European Geosciences Union |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 4 |
Pages | 951-968 |
DOI | https://doi.org/10.5194/cp-20-951-2024 |
Public URL | https://durham-repository.worktribe.com/output/2439733 |
Files
Published Journal Article
(2.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This work is distributed under the Creative Commons Attribution 4.0 License.
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search