Judith T. Karpen
Solar Eruptions in Nested Magnetic Flux Systems
Karpen, Judith T.; Kumar, Pankaj; Wyper, Peter F.; DeVore, C. Richard; Antiochos, Spiro K.
Authors
Pankaj Kumar
Dr Peter Wyper peter.f.wyper@durham.ac.uk
Associate Professor
C. Richard DeVore
Spiro K. Antiochos
Abstract
The magnetic topology of erupting regions on the Sun is a key factor in the energy buildup and release, and the subsequent evolution of flares and coronal mass ejections (CMEs). The presence/absence of null points and separatrices dictates whether and where current sheets form and magnetic reconnection occurs. Numerical simulations show that energy buildup and release via reconnection in the simplest configuration with a null, the embedded bipole, is a universal mechanism for solar eruptions. Here we demonstrate that a magnetic topology with nested bipoles and two nulls can account for more complex dynamics, such as failed eruptions and CME–jet interactions. We investigate the stalled eruption of a nested configuration on 2013 July 13 in NOAA Active Region 11791, in which a small bipole is embedded within a large transequatorial pseudo-streamer containing a null. In the studied event, the inner active region erupted, ejecting a small flux rope behind a shock accompanied by a flare; the flux rope then reconnected with pseudo-streamer flux and, rather than escaping intact, mainly distorted the pseudo-streamer null into a current sheet. EUV and coronagraph images revealed a weak shock and a faint collimated outflow from the pseudo-streamer. We analyzed Solar Dynamics Observatory and Solar TErrestrial RElations Observatory observations and compared the inferred magnetic evolution and dynamics with three-dimensional magnetohydrodynamics simulations of a simplified representation of this nested fan-spine system. The results suggest that the difference between breakout reconnection at the inner null and at the outer null naturally accounts for the observed weak jet and stalled ejection. We discuss the general implications of our results for failed eruptions.
Citation
Karpen, J. T., Kumar, P., Wyper, P. F., DeVore, C. R., & Antiochos, S. K. (2024). Solar Eruptions in Nested Magnetic Flux Systems. Astrophysical Journal, 966(1), Article 27. https://doi.org/10.3847/1538-4357/ad2eaa
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 22, 2024 |
Online Publication Date | Apr 23, 2024 |
Publication Date | May 1, 2024 |
Deposit Date | Apr 24, 2024 |
Publicly Available Date | Apr 25, 2024 |
Journal | The Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 966 |
Issue | 1 |
Article Number | 27 |
DOI | https://doi.org/10.3847/1538-4357/ad2eaa |
Keywords | Solar magnetic fields, Solar magnetic reconnection, Solar coronal mass ejections, Solar activity |
Public URL | https://durham-repository.worktribe.com/output/2395784 |
Files
Published Journal Article
(3.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Interchange reconnection dynamics in a solar coronal pseudo-streamer
(2023)
Journal Article
Plasmoids, Flows, and Jets during Magnetic Reconnection in a Failed Solar Eruption
(2023)
Journal Article
The Imprint of Intermittent Interchange Reconnection on the Solar Wind
(2022)
Journal Article
Comparison of magnetic energy and helicity in coronal jet simulations
(2023)
Journal Article
The Dynamic Structure of Coronal Hole Boundaries
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search