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A B S T R A C T 

We present FITCOV an approach for accurate estimation of the covariance of two-point correlation functions that requires fewer 
mocks than the standard mock-based covariance. This can be achieved by dividing a set of mocks into jackknife regions and 

fitting the correction term first introduced in Mohammad & Perci v al ( 2022 ), such that the mean of the jackknife covariances 
corresponds to the one from the mocks. This extends the model beyond the shot-noise limited regime, allowing it to be used for 
denser samples of galaxies. We test the performance of our fitted jackknife approach, both in terms of accuracy and precision, 
using lognormal mocks with varying densities and approximate EZmocks mimicking the Dark Energy Spectroscopic Instrument 
LRG and ELG samples in the redshift range of z = [0.8, 1.1]. We find that the Mohammad–Perci v al correction produces a bias 
in the two-point correlation function covariance matrix that grows with number density and that our fitted jackknife approach 

does not. We also study the effect of the covariance on the uncertainty of cosmological parameters by performing a full-shape 
analysis. We demonstrate that our fitted jackknife approach based on 25 mocks can reco v er unbiased and as precise cosmological 
parameters as the ones obtained from a covariance matrix based on 1000 or 1500 mocks, while the Mohammad–Perci v al 
correction produces uncertainties that are twice as large. The number of mocks required to obtain an accurate estimation of the 
covariance for the two-point correlation function is therefore reduced by a factor of 40–60. The FITCOV code that accompanies 
this paper is available at this GitHub repository . 
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 I N T RO D U C T I O N  

 new generation of cosmological surv e ys such as Dark Energy
pectroscopic Instrument (DESI Collaboration 2016 , 2022 ); have
tarted taking data and even more will in the coming years with e.g.
he start of operations of Euclid (Laureijs et al. 2011 ) and the Vera
ubin Observatory (Ivezi ́c et al. 2019 ). Therefore, it is becoming
ital to develop methods for deriving covariance matrices in order to
stimate the uncertainties on the cosmological parameters of interest.

Existing methods of e v aluating the cov ariance matrix that quanti-
es the errors on the galaxy two-point correlation function of galaxy
edshift surv e ys can be separated into three different cate gories:
ock-based, analytic, and internal, each best suited to different

cenarios. Mock-based covariance matrices are built from a large
uite of numerical simulations, ‘mock’ catalogues, that mimic the
roperties of the cosmological surv e ys with high fidelity. These
ocks need to be (i) accurate in the sense that they have to reproduce

he two- and higher-point statistics with limited biases and (ii)
umerous in order to a v oid sample variance, which introduces noise
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n the covariance matrices that could bias the inferred parameter
ncertainties (e.g. Dawson et al. 2013 ; Perci v al et al. 2014 ). 
Analytic approaches provide expectation values of the large-

cale structure statistics directly and are much less computationally
 xpensiv e. Howev er, that requires a description of the non-Gaussian
erms that enter the four-point correlation function, which is needed
o compute the covariance of the two-point correlation function.
ccurate modelling of the non-linear gra vitational ev olution, galaxy
ias, redshift-space distortions, and shot noise is thus a challenge to
ompute analytic covariance matrices. The modelling usually relies
n Perturbation Theory (PT) which limits the domain of accuracy
o the quasi-linear regime when the density perturbations remain
mall compared to unity. Moreo v er, one also needs to account for
urv e y geometry and window function effects. Recent progress in this
irection has been made to develop codes for the power spectrum
 CO VAPT , Wadekar , Ivanov & Scoccimarro 2020 ). Additionally,
e can mention semi-analytic approaches, which use the data to

alibrate themselves, for example, RASCALC code (Philcox et al.
019 ; O’Connell et al. 2016 ). 
Finally, data-based or internal methods, such as jackknife and

ootstrap, are often used especially when large sets of mocks are
ot available. They consist in resampling the survey data by slicing
© The Author(s) 2023. 
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he original data into subsamples and weighting these subsamples 
ollowing specific prescriptions. In the standard jackknife approach, 
or a given jackknife realization i , the subsamples have unit weight
xcept the subsample indexed i that is weighted 0, hence this
pproach is also called ‘delete-one’ jackknife resampling. Internal 
esampling methods do not rely on any assumption about the 
nderlying gravity model and are thus less sensitive to unknown 
hysics. Ho we v er, the y can lack precision and suffer from biases, as
iscussed in Norberg et al. ( 2009 ), Friedrich et al. ( 2016 ), and Fa v ole
t al. ( 2021 ). One fundamental deficiency of all internal covariance
stimators is the large-scale bias coming from a lack of a proper
stimation of the supersample covariance (Lacasa, Fabien & Kunz, 
artin 2017 ), which is due to the lack of modes larger than the surv e y

ize. Recently, a correction to the standard jackknife resampling 
ethod was proposed in Mohammad & Perci v al ( 2022 ) which

onsists in introducing a different weighting scheme for the cross- 
airs than for the auto-pairs, where the auto-pairs are made up of
bjects that lie in the same subsample and cross-pairs of two objects
hat reside in two distinct subsamples. Indeed, the choice of assigning
eights to pairs of objects is arbitrary and Mohammad & Perci v al

 2022 ) tested different prescriptions. They found that by adjusting 
he weighting of the pairs that compose the estimates of the two-
oint correlation function, they were able to provide more accurate 
stimates of the variance than the standard jackknife. Ho we ver, 
t remains an internal estimator, with the associated characteristic 
undamental problems such as supersample covariance. 

In this work, we follow a similar methodology but propose to 
o beyond that work by (i) considering some cross-pairs that were 
eglected in both the standard jackknife and the jackknife method 
ith Mohammad–Perci v al correction, (ii) fitting the appropriate 
eighting scheme to a mock-based covariance built from a smaller 
umber of mocks than for traditional mock-based approach. The 
aper’s outline is as follows: in Section 2 , we re vie w the formalism
ssociated with the standard jackknife resampling method and the 
orrection proposed in Mohammad & Perci v al ( 2022 ). We introduce
he formalism of our proposed hybrid approach. Its performance 
n mocks is presented in Section 3 and compared with the original
orrection for jackknife and with mock-based method for estimating 
he covariance matrix. We conclude and discuss further prospects in 
ection 4 . 

 C OVA R I A N C E  ESTIMATORS  

n this paper, we work in configuration space. We use the Landy–
zalay estimator with double-counting assumed, (Landy & Szalay 
993 ), which can be written as: 

( s , μ) = 

DD ( s , μ) − 2 DR ( s, μ) + RR ( s, μ) 

RR ( s , μ) 
, (1) 

here s is the redshift space separation of a pair of galaxies, μ is
he cosine of the angle between the separation vector and the line of
ight, ξ ( s , μ) is the two-point correlation function in redshift space,
D ( s , μ) are the binned auto-pair counts of the data catalogue, RR ( s ,
) are the binned pair counts computed from a matching random 

atalogue, and DR ( s , μ) are the binned cross-pair counts between
he random and the data catalogue. All pair counts are assumed to be
uitably normalized in equation ( 1 ). 

The two-point correlation function can be decomposed into Leg- 
ndre multipoles defined as: 

� ( s) = (2 � + 1) 
∫ 1 

0 
ξ ( s, μ) L � ( μ) d μ, (2) 
here � is the order of the multipole, and L � ( μ) are the Legendre
olynomials. 

.1 Co v ariance from data or data-like mocks 

osmological simulations can be divided into two categories: (i) 
recise and e xpensiv e computationally N -body simulations, which 
re known to treat properly non-linear gra vitational ev olution; (ii)
ess accurate approximate mock methods, such as Bias Assignment 

ethod, (Balaguera-Antol ́ınez et al. 2018 ), COmoving Lagrangian 
cceleration (Tassev, Zaldarriaga & Eisenstein 2013 ), Ef fecti ve 
eldovich mock (Chuang et al. 2014 ), (Zhao et al. 2021 ), Fast
article Mesh (Feng et al. 2016 ), GLAM, (Klypin & Prada 2018 ),

ognormal, PATCHY (Kitaura et al. 2016 ), etc. The y can pro vide a
ood covariance for scales > 10 h −1 Mpc, but small-scale clustering
s not properly resolved. 

Assuming a surv e y with N m 

mocks, the co variance matrix of the
wo-point correlation function is defined as: 

 ij = 

1 

N m 

− 1 

N m ∑ 

k= 1 

[ 
ξ

[ k] 
i − 〈 ξi 〉 

] [ 
ξ

[ k] 
j − 〈 ξj 〉 

] 
, (3) 

here ξ [ k] 
i is the i th bin of correlation function of the k th mock, and

 ξ i 〉 is the mean o v er the N m 

mocks of the i th bin of the correlation
unction. 

Ho we ver, for some subsets of modern surveys, like the DESI
right Galaxy Surv e y, the number of galaxies and their number
ensity sometimes becomes so large, that even these approximate 
ethods become e xpensiv e computationally, posing a problem. 

.2 Jackknife co v ariance 

ackknife is a data resampling approach that involves creating 
ultiple subsamples of the same data set by systematically excluding 

egions of the data. When applied to the cosmological surv e ys, the
ootprint is divided into regions of similar area and it is these that are
ystematically excluded to make the multiple subsamples. 

This approach has the advantage of making no assumptions 
egarding non-linear evolution and non-standard physics, and at the 
ame time is extremely cheap from the computational perspective, 
s it does not require e xpensiv e production of thousands of mocks.
ssuming we have cut our data set into N jk pieces, the covariance
atrix is: 

 ij = 

N jk − 1 

N jk 

N jk ∑ 

k= 1 

[ 
ξ

[ k] 
i − 〈 ξi 〉 

] [ 
ξ

[ k] 
j − 〈 ξj 〉 

] 
, (4) 

here ξ [ k] 
i is the i th bin of the correlation function of the k th jackknife

egion, and 〈 ξ i 〉 is its mean over all the N jk jackknife regions. The
oefficient on the right-hand side is larger than the corresponding 
actor in equation ( 3 ) as it compensates for the reduction in the
ovariance due to the overlap between the subsamples. 

In practice, we consider the galaxy two-point correlation function 
nd the DD , DR , and RR pair counts mentioned in the Landy–Szalay
stimator defined in equation ( 1 ). 

.2.1 Standard approach 

e will assume the number of subsamples is N jk and work in terms
f pair counts rather than correlation functions. For simplicity, we 
ill denote as AA k the auto-counts that are contributed by pairs of
alaxies that both reside in the k th area of the surv e y (the areas that
MNRAS 527, 9048–9060 (2024) 
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re systematically excluded to form the jackknife subsamples) and
C k the cross-counts between galaxies in this k th area and those in the

ackknife subsample that is made by excluding this area. The counts
n the jackknife subsample TT k are related to the o v erall number of
ounts in the full surv e y TT tot and the abo v e quantities by 

T k = TT tot − AA k − CC k . (5) 

here in defining each of these pair counts we count each unique pair
nly once. The total number of auto- and cross-pairs can be related
o their means o v er the jackknife samples by 

A 

tot = N jk AA (6) 

nd, as we account for double counting with the cross-pairs only
hile looking at the full sample, we need to divide the obtained

stimate by 2 to be consistent with the auto-pairs: 

C 

tot = 

N jk 

2 
CC , (7) 

here AA = 

1 
N jk 

∑ N jk 
k= 1 AA k and CC = 

2 
N jk 

∑ N jk 
k= 1 CC k . 

Following (Mohammad & Percival 2022 ), we choose to define an
stimator of the normalized auto-pairs θ a, k in a specific realization,
uch that θ a = AA by 

a ,k = 

1 

N jk − 1 

(
N jk AA − AA k 

)
(8) 

nd the estimator of the normalized cross-pairs θ c , k such that θ c =
C by 

c,k = 

2 

N jk − 2 

(
N jk 

2 
CC − CC k 

)
, (9) 

here it was taken into account that the cross-pairs contribute to the
otal estimate twice, while the auto-pairs only once. 

We can then further compute for each jackknife realization the
eviation from the mean value of the auto paircounts 

a,k − θa = 

1 

N jk − 1 

(
AA − AA k 

)
(10) 

nd cross paircounts 

c,k − θc = 

2 

N jk − 2 

(
CC − CC k 

)
. (11) 

We can now express how the covariance of each type of pair count
an be represented in terms of the estimators abo v e, if we assume
he following definition for the covariance, where DD t are just some
air counts of type t : 

ov ( D D 1 , D D 2 ) = 

√ 

DD 1 DD 2 

D D 

tot 
1 D D 

tot 
2 

1 

N jk − 1 
×

×
N jk ∑ 

k= 1 

( D D 1 k − D D 1 )( D D 2 k − D D 2 ) (12) 

By replacing ( DD 1 , DD 2 ) by ( AA , AA ) or ( CC , CC ) or ( CC , AA )
n equation ( 12 ) and using equations ( 10 ) and ( 11 ), one obtains: 

ov ( AA, AA ) = 

N jk − 1 

N jk 

N jk ∑ 

k= 1 

(
θa ,k − θ̄a 

)2 
(13) 

ov ( C C , C C ) = 

( N jk − 2) 2 

2 N jk ( N jk − 1) 

N jk ∑ 

k= 1 

(
θc ,k − θ̄c 

)2 
(14) 

ov ( C C , AA ) = 

( N jk − 2) √ 

2 N jk 

N jk ∑ 

k= 1 

(
θc ,k − θ̄c 

) (
θa ,k − θ̄a 

)
(15) 
NRAS 527, 9048–9060 (2024) 
This gives all the components needed to compute the covariance
f TT , using its definition in equation ( 5 ): 

ov ( T T , T T ) = cov ( AA, AA ) + cov ( C C , C C ) + 2 cov ( AA, C C ) 

 

N jk − 1 

N jk 

N jk ∑ 

k= 1 

(
θa ,k − θ̄a 

)2 + 

( N jk − 2) 2 

2 N jk ( N jk − 1) 

N jk ∑ 

k= 1 

(
θc ,k − θ̄c 

)2 

+ 

√ 

2 ( N jk − 2) 

N jk 

N jk ∑ 

k= 1 

(
θc ,k − θ̄c 

) (
θa ,k − θ̄a 

)
(16) 

Note how the terms scale differently with the number of
he jackknife regions. Mohammad & Perci v al ( 2022 ) argue that
his inconsistent scaling is the source of the bias that arises
ith the standard jackknife approach. In the next sections, we
ill see how adjusting this scaling can enable one to reco v er

n unbiased covariance estimator and demonstrate the need for
oing beyond the Mohammad–Perci v al correction to get un-
iased covariance estimators in all regimes of galaxy number
ensity. 

.2.2 Mohammad–Per cival corr ection 

ohammad & Perci v al ( 2022 ) proposed to weight the cross-pairs CC
n order to fix the mismatch in the scaling, as seen in equation ( 16 ).

ith this weight α multiplying all the CC pair counts, the expression
or TT k becomes 

 T k = T T tot − AA k − αCC k . (17) 

The definition of θ c , k is then generalized to: 

c,k ( α) = 

2 α

N − 2 α

(
N 

2 
CC − αCC k 

)
, (18) 

hich also changes slightly the mean of this quantity as θc ( α) =
CC . 
Following the steps from equations ( 9 ), ( 11 ), and ( 14 ), the modified

xpression for the covariance of the CC paircounts weighted by
is 

ov ( αC C , αC C ) = 

( N jk − 2 α) 2 

2 α2 N jk ( N jk − 1) 

N jk ∑ 

k= 1 

(
θc,k − θ̄c 

)2 
(19) 

We see that for α = 1 we reco v er the ordinary jackknife, as it
ill remo v e the cross-pairs in the same way as it remo v es the auto-

airs. Alternatively, by choosing α = N jk / 
[ 
2 + 

√ 

2 ( N jk − 1) 
] 

we

an achieve equal scaling for the first two terms. Therefore, under
he assumption of cov( CC , AA ) = 0 we indeed have all the terms
caling with N jk in same manner, which can be seen by rewriting the
xpression for cov( TT ( α), TT ( α)) as 

ov ( T T ( α) , T T ( α)) = cov ( AA, AA ) + cov ( αC C , αC C ) 

= 

N jk − 1 

N jk 

N jk ∑ 

k= 1 

(
θa ,k − θ̄a 

)2 

+ 

( N jk − 2 α) 2 

2 α2 N jk ( N jk − 1) 

N jk ∑ 

k= 1 

(
θc,k − θ̄c 

)2 
(20) 

In order to illustrate the effect of introducing the α weighting
f Mohammad & Perci v al ( 2022 ), we create 1000 Poisson random
atalogues in a box with a size of 1 Gpc h −1 , divide them into
25 cubic regions and then compute the covariance matrices of the
eal-space correlation function. We do this for both the standard
ackknife and jackknife with the Mohammad–Perci v al correction.
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Figure 1. Comparison of the accuracy in the estimate of the diagonal 
elements of the covariance matrix for the real-space correlation functions 
as a function of scale obtained from 1000 cubic box independent mock 
catalogues. The ratio is the mean of the diagonal elements obtained using 
different jackknife approaches to those obtained directly from the ensemble 
of mocks. The noticeable scale-dependent bias that is visible for the standard 
jackknife estimate is absent when the Mohammad–Perci v al correction is 
employed. 
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he results are presented in Fig. 1 . We show the ratio of the mean of
he diagonal elements, σ 2 ≡ C ii , of the covariance matrix between 
ackknife-based σ jk and mock-based σ (estimated directly using 
quation 3 ), where the blue curve uses the standard jackknife and
he orange one includes the Mohammad–Perci v al correction. The 
tandard jackknife is o v er-estimating the covariance with respect 
o that from the mocks, while introducing the α weighting of 

ohammad & Perci v al ( 2022 ) for the cross-pairs remo v es this
ias. 

.3 Hybrid approach 

he real galaxy density has physical correlations and so galaxy 
istributions are not Poisson distributions. Therefore, the assumption 
f cov( CC , AA ) = 0 is not valid. With the α weighting of the cross-
airs that was introduced in Section 2.2.2 , equation ( 15 ) becomes 

ov ( αC C , AA ) = 

( N jk − 2 α) √ 

2 α2 N jk 

N jk ∑ 

k= 1 

(
θc,k − θ̄c 

) (
θa,k − θ̄a 

)
. (21) 

We can see that adopting any general fixed value of α unfortunately 
eaves the scaling of cov( CC , AA ) different from those of cov( AA ,
A ) and cov( CC , CC ), so, in order to try to recover the benefits of the
ohammad–Perci v al approach, we are treating α as a free parameter. 
e propose therefore to augment the jackknife method with α
eighting where the value of α is tuned by fitting the covariance 

stimate from a limited number of mocks. A scheme that represents
he approach is shown in Fig. 2 . First, let us assume we have a set
f N m 

mocks S = { S 1 ...S N m } . Then, S / S k denotes the set of mocks
ith the k th mock remo v ed. Then, we refer to the mock covariance

rom such a set S / S k as C ij [ S / S k ]. We also introduce the α-dependent
ackknife covariance obtained from a mock S k with a chosen α
eighting as C ij [ S k ]( α), from correlation functions constructed with

ounts following equation ( 17 ). 
Having that in our possession, we are able to estimate the 

ncertainty on the diagonal elements of the covariance � ij (diag( C )).
irst, we resample the given set of mocks and produce N m covariances
 ij [ S / S k ]. Then we compute the covariance matrix of the diagonals
 ij (diag( C )), where we limit ourselves to the diagonal elements as

here are not enough degrees of freedom to build a covariance of
atrices (Wishart 1928 ): 

 ij ( diag ( C)) = cov ( C ii , C jj ) 

= 

N m 

− 1 

N m 

N m ∑ 

k= 1 

( C ii [ S/S k ] − C ii [ S]) 

× ( C jj [ S/S k ] − C jj [ S]) (22) 

In general N m 

should be greater than the number of elements in
he fitted part of the cov ariance. Ho we ver, in the case of a small N m 

,
ne can restrict this to just the diagonal elements of � ij , to ensure
hat covariance matrix stays non-singular. The next step consists 
f finding which specific α is needed to obtain a realisation of
he covariance matrix to describe C ij [ S ]. First, we can write the

dependent estimator of the covariance C ij ( α) based on the mean of
 m 

α dependent jackknife covariances: 

 ij ( α) = 

1 

N m 

N m ∑ 

k= 1 

C ij [ S k ]( α) (23) 

Then, the χ2 of the C ii ( α) describing the C ii [ S ] can be written as: 

2 
C ( α) = 

∑ 

ij 

( C ii ( α) − C ii [ S]) 
(
� 

−1 
)

ij 
( C jj ( α) − C jj [ S]) (24) 

Following that, we minimize χ2 
C by varying α, such that we obtain

2 
C ( αmin ) = min ( χ2 

C ( α)). To justify using the Gaussian likelihood in
his procedure, we first notice that we are using only the diagonals
f the covariance matrix. That allows us, with sufficiently large N m 

,
o approximate the distribution of the separate bins of the diagonals
 ii with a Gaussian. 
Therefore, our proposed estimator of the α dependent covariance 
atrix C 

(fit) 
ij can be defined as: 

 

(fit) 
ij = C ij ( αmin ) = 

1 

N m 

N m ∑ 

k= 1 

C ij [ S k ]( αmin ) . (25) 

hile only the diagonal of C 

(fit) 
ij are used when fitting for α, all

he elements of C 

(fit) 
ij are consistently adjusted with the value of

that is found. In the original Mohammad–Perci v al approach, the
ontribution of the cross-pairs to the covariance is adjusted to match
hat of the auto-pairs. Our hybrid approach allows us to adjust the
ross-pair contribution on the α weighted covariance so that the 
ovariance matches the one obtained from the limited set of mocks.
e will show in the next section that by doing so, we can greatly

educe the bias that can appear for dense samples when using the
xed α weighting of Mohammad & Perci v al ( 2022 ). Ho we ver, the
ybrid approach does require more than a single mock to create a
ovariance estimate, but in the next section we will also show that
he number of mocks needed is significantly reduced compared to a
urely mock-based approach. 

 TESTS  O N  M O C K S  

e test the performance of the fitted jackknife method with respect
o other covariance matrix estimation methods on different sets of 
ocks that include RSD (Redshift Space Distortions) and some 

eometrical effects that we will describe in subsequent sections. 
or each specific set of mocks we also generate a set of matching
andom synthetic catalogues. 

In Section 3.1 , we present the methodology of the tests that we
erform on our mocks. In Section 3.2 , a set of tests is performed
MNRAS 527, 9048–9060 (2024) 
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Figure 2. Schematic describing the procedure to obtain the fitted covariance C 

ij 
fit as defined in equation ( 25 ) and discussed in Section 2.3 . 
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n lognormal mocks produced by the MOCKFACTORY code 1 with
hree number densities to explore shot noise-dominated and sample
ariance-dominated regimes, but also to mimic the DESI LRG (Lu-
inous Red Galaxies) and ELG (Emission Line Galaxies) samples.

n Section 3.3 , approximate EZmocks mimicking the DESI LRG and
LG samples are used to provide a mock-based covariance matrix
hich has the level of statistical precision of expected from the
ESI Year-5 data. The corresponding number densities can be seen

n Fig. 3 for LRG EZmocks in red, ELG EZmocks in purple, and the
NRAS 527, 9048–9060 (2024) 

 https:// github.com/ cosmodesi/ mockfactory 

B  

j  

t  
ifferent lognormal mocks at n̄ = (2 , 5 , 15) × 10 −4 [Mpc h −1 ] −3 

n blue, orange, and green, respectively. We use 1500 lognormal
ocks for each space density, and 1000 ELG and LRG EZ mocks, 

espectively. 

.1 Methodology 

oth the random and data samples are divided into N jk = 196
ackknife regions (the results shown in Section 3.2 are not sensitive
o N jk ) and FKP (Feldman, Kaiser & Peacock 1994 ) weights w i for

https://github.com/cosmodesi/mockfactory
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Figure 3. Number density dependence on redshift for different data sets 
used. The lognormal mock samples were chosen to have a constant density 
selection function, to simplify the matters, while LRG and ELG mock samples 
follow the expected values from the corresponding DESI surv e y subsets. 

Figure 4. Schematic view of the procedure to test dif ferent cov ariance matrix 
estimators, as described in Section 3.1 . 
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ach point i in the data set are assigned as follows: 

 i = 

1 

1 + n̄ i P 0 
(26) 

here P 0 = 10 4 h 3 Mpc −3 is the power spectrum estimate at the
iven redshift. The FKP weights minimize the variance of the power 
pectrum estimate for samples that have a number density that varies 
ith redshift. Then, the correlation functions are computed using 

YCORR 

2 for both the samples and the jackknife realizations, which 
llows us to obtain C ij , C ij ( α), and C 

(fit) 
ij , defined in equations ( 3 ),

 23 ), and ( 25 ). 
In order to test the robustness and precision of different covariance 

stimators using our set of lognormal mocks we have used the 
rocedure described in Fig. 4 . There we have created a set of 30 fitted
nd jackknife covariances and inferred cosmological parameters 
rom 50 randomly selected mocks. In total we have 1500 pairs of
ovariances and mocks, which give us a set of 1500 fits for both the
ackknife and fitted covariance approaches. As the mocks have the 
ame cosmological parameters, and the covariances are considered 
stimators of the same underlying ‘true’ covariance matrix, we then 
 https:// github.com/ cosmodesi/ pycorr

fi  

C  

t

ompared the spread of parameter values and their uncertainties to 
he one obtained from fitting separately each of the 1500 mocks to
he conventional mock-based covariance matrix. The same is then 
epeated for the approximate mocks, with the difference that this 
ime we have only 1000 mocks, bringing us to the sets of 20 fitted
nd jackknife covariances. 

.2 Lognormal mocks 

n order to quickly test our approach with different parameters, such
s number density, we produce a set of lognormal mocks which
re often used as a simple approximation to the non-linear density
eld that evolves from Gaussian initial conditions. The lognormal 
istributed density contrast δ( � x ) is related to a Gaussian field G ( � x ) =
n [1 + δ( � x )] − 〈 ln [1 + δ( � x )] 〉 as: 

( � x ) = e −〈 G 

2 〉+ G ( � x ) − 1 . (27) 

The two-point correlation function ξ ( r ) is related to the correlation
unction of the Gaussian field ξG ( r ) as: 

G 

( r) = ln [1 + ξ ( r)] . (28) 

So, a fiducial power spectrum P ( k ) can be transformed into the
orrelation function ξ ( r ), which is then converted to the correlation
unction of the Gaussian field using equation ( 28 ). We Fourier
ransform it to the power spectrum P G ( k ) and eventually generate
he Fourier space Gaussian field G ( k ) as: 

 ( k) = 

√ 

P G ( k) V 

2 
( θr + iθi ) (29) 

here θ r , θ i are Gaussian random variables with unit variance and 
ero mean, and V is the volume of the simulation. After simulating
he Fourier Gaussian field G ( k ) on the grid, we then use Fast Fourier
ransform to transform it and obtain the regular configuration space 
aussian field G ( x ). This is then transformed into the o v er-density
eld using equation ( 27 ). The expectation value for the number of
alaxies in a particular cell is computed given a fixed mean number
ensity n̄ , and galaxies are then drawn using the Poisson distribution
nd placed randomly the cell. Velocities are then assigned using the
inearized continuity equation: 

( t) 
∂ δ( � x ) 

∂ t 
+ 

� ∇ · � v ( � x ) = 0 (30) 

here a ( t ) is a scale factor, and which is solved using Zeldovich
pproximation (Zel’dovich 1970 ). 

Eventually, the RSD effect is modelled at a chosen redshift using
he velocity information by affecting the coordinates of the galaxy x i 

s: 

 

i 
rsd = x i + f ( � n . � v ) n i (31) 

here x i rsd are the redshift-distorted coordinates, f is the linear growth
ate of structure, � v is the velocity of the galaxy, and n i is the line of
ight. 

.2.1 Dependence on number density 

e create three sets of lognormal mocks, each set containing 1500
ealizations, for number densities n̄ = 2 × 10 −4 , 5 × 10 −4 , and
5 × 10 −4 h 3 Mpc −3 at z = 1. Each of the realizations is made from
 cubic box with a volume of (2 Gpc h −1 ) 3 with grid of size 384 3 and
ducial cosmology with h = 0.674, σ 8 = 0.816, and �(0) 

m 

= 0 . 31. The
LASS code (Blas, Lesgourgues & Tram 2011 ) is used to generate

he initial power spectrum. Redshift space distortions are then added, 
MNRAS 527, 9048–9060 (2024) 
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Figure 5. Histogram of the α parameter fitted from 50 mocks for lognormal 
mocks with n = 2 × 10 −4 , 5 × 10 −4 , and 15 × 10 −4 h 3 Mpc −3 . The vertical 
black line shows the value of α = N jk / (2 + 

√ 

2 ( N jk − 1)). 

Figure 6. The average of the quantity defined in equation ( 32 ) representing 
the bias of the specific covariance estimation approach plotted as a function 
of separation, s , for various number densities. 
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nd each box is cut to have a footprint that co v ers 15 per cent of the
ull sky. Each mock is then analysed in the redshift range from 0.8 to
.2, and the corresponding randoms are generated, which are about
our times denser than the data mocks. The procedure to obtain the
tted jackknife covariance is summarized in Fig. 2 and explained

n the previous section. Here, we use N m 

= 50 mocks. We measure
orrelation functions from the mocks in bins of 5 h −1 Mpc. Fig. 5
resents the α parameter value distribution, obtained from the fits of
he covariances. 

Fig. 6 shows a measure of the relative bias �σ 2 ( ξ� ) /σ ( σ 2 
Mock )

etween a jackknife-based covariance matrix and the mock-based
ovariance as a function of pair separation s . For simplicity we only
onsider the diagonal elements of each covariance matrix estimate.
his relative bias is defined as 

�σ 2 ( ξ� ) 

σ ( σ 2 
Mock ) 

= 

σ 2 ( ξ� ) − σ 2 
Mock ( ξ� ) 

σ ( σ 2 
Mock ( ξ� )) 

, (32) 
NRAS 527, 9048–9060 (2024) 
here σ ( ξ� ) is the variance on a given multipole l obtained from the
ackknife method, σ Mock ( ξ� ) is the variance on the same multipole
btained from the 1500 lognormal mocks and σ ( σ 2 

Mock ) is the
ncertainty on the mock-based error bar, determined by applying
he classical jackknife delete-one mock estimator to the set of mocks
rom which the covariance is estimated. 

The left panel of Fig. 6 shows this relative bias of the jackknife
ethod with the Mohammad–Perci v al correction while the right

anel shows the result for our fitted jackknife method. In both cases,
he monopole, ξ 0 , is displayed in the top panel, the quadrupole,
2 , in the middle, and the hexadecapole, ξ 4 , in the bottom. The
oloured lines sho w dif ferent number densities and the solid lines
re the baseline configuration of 196 jackknife regions while the
ashed lines show the test of using 100 jackknife regions instead. As
xpected, the underestimation slightly worsens with the increase in
he number of jackknife regions, as predicted by equation ( 15 ). 

Ho we ver, as the number density n̄ increases, the underestima-
ion of the jackknife method with the Mohammad–Perci v al cor-
ection becomes more and more significant, especially for n̄ =
5 × 10 −4 h 

3 Mpc −3 . This underestimation is not visible on the
ackknife covariance matrix estimates produced from the random
atalogues as shown in Fig. 1 . As explained in the previous section,
he clustering of the data leads to higher covariance due to additional
ovariance coming from cross-correlations between CC and AA pair
ounts. 

Additionally, there is no strong dependence on the number density
or the fitted jackknife method which makes it more robust whatever
he density regime of the galaxy sample of interest. It should be
oted that for low-density regimes optimal α seems to be closer to
he default value of Mohammad–Perci v al approach, and its fitted
stimation in our method introduces additional uncertainty, which
akes our method more imprecise as n ( z) decreases. 

.2.2 Effect on the cosmological parameters 

o test the performance of different covariance estimation techniques
e infer f σ 8 , α� , and α⊥ 

by fitting the theoretical predictions for the
ultipoles to the ones from the mocks using covariances from estima-

ors re vie wed earlier. The fit is performed using a 5-parameter model,
hich is based on Lagrangian Perturbation Theory and includes

he linear growth rate f σ 8 , Alcock–Paczynski parameters (Alcock &
aczynski 1979 ) α� and α⊥ 

, first- and second-order biases b 1 , b 2 , and
he ef fecti ve Fingers Of God parameter (FOG) σ FOG . The theoretical
ower spectrum P FOG is obtained using the MomentumExpansion
odule of the VELOCILEPTORS package (for more details, see Chen,
lah & White 2020 ; Chen et al. 2021 ). The Fingers-Of-God effect

s modelled following Taruya, Nishimichi & Saito ( 2010 ), as 

 FOG ( k ) = 

1 

1 + ( k · ˆ n σFOG ) 2 / 2 
P ( k ) , (33) 

here P ( k ) is the power spectrum without the FOG effect obtained
ith VELOCILEPTORS , σ FOG is the one-dimensional velocity disper-

ion, and ˆ n is the LOS (line of sight) direction unit vector. The power
pectrum P FOG ( k ) is then transformed into the two-point correlation
unction ξ th ( s , μ) using a F ast-F ourier-Transform and from that we
ompute the theoretical correlation function multipoles ξ th 

� ( s, μ). 
Once we have the correlation function multipoles ξ� ( s i ), and

ovariance matrix 
 

� 1 � 2 
ij = C ij , C 

k 
ij ( α) or C 

(fit) 
ij , we can obtain the
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Figure 7. The summary of the results from the cosmological fits from the 
lognormal mocks with varying density (one for each column and with density 
in (Mpc h −1 ) 3 indicated at the top) for the three covariance matrix estimation 
methods: jackknife covariance with Mohammad–Percival correction in green, 
fitted jackknife covariance in blue, and mock covariance in red. The top panels 
shows the histograms of the reduced χ2 , while the three bottom ones show 

the marginalized 2D-distributions of parameters and their uncertainties for 
f σ 8 , α� , and α⊥ , obtained from the set of fits described in the Section 3.1 . 
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ikelihood L ( p 1 ,..., p n ): 

log ( L ( p 1 , .., p n )) = 

∑ 

� 1 ,� 2 

∑ 

i,j 

(
ξ� 1 ( s i ) − ξ

(th) 
� 1 

( s i ) 
)

× (

 

−1 
)� 1 � 2 

ij 

(
ξ� 2 ( s j ) − ξ

(th) 
� 2 

( s j ) 
)

, (34) 

here ξ ( th ) 
� ( s) is the theoretical prediction of the multipole for the

et of k parameters { a 1 ,.., a k } and we apply the Hartlap correction
Hartlap, Simon & Schneider, 2007 ) on the inverse of the covariance
atrix such that the original uncorrected covariance matrix denoted 

s C 

(orig) 
ij and the corrected inverse covariance matrix 
 

−1 
ij are related 

y: 

 

−1 
ij = 

n − p − 2 

n − 1 

(
C 

−1 
)(orig) 

ij 
(35) 

here n is the number of discrete samples, and p is the number
f entries in the data vector (number of bins used). We use a
ikelihood maximization method to find the χ2 minima using IMINUIT 

Dembinski et al. 2020 ). Errors are estimated from the region of
χ2 = 1 of the marginalized χ2 distribution, and they are allowed 

o be asymmetric. The choice of a frequentist method of analysis is
oti v ated by its low computational cost. 
In Fig. 7 , the first row shows the distributions of reduced χ2 for

ifferent choices of n̄ , and the other ro ws sho w the marginalized 2D-
istributions of parameters and their uncertainties for respectively, 
 σ 8 , α� , and α⊥ 

. The distributions of reduced χ2 show the goodness
f the individual fits for the three methods. The contours in the
ottom panel show how, for all the parameters, the spread from
he Mohammad–Perci v al jackknife in green is in general much
ider than the one from the mock covariance in red both in terms
f uncertainty and parameter values. While in case of the fitted
ackknife covariance, the blue contours are very similar to the mock
ovariance ones. Presumably, this improvement comes from using 
0 realizations rather than one. In Fig. 8 , we also show in the same
orm the performance from the standard jackknife in comparison 
ith the Mohammad–Perci v al corrected jackknife and mock-based 

o variance. As e xpected, the standard jackknife produces slightly 
arger contours, which are noticeably shifted with respect to the 

ock covariance, especially for f σ 8 . 
To additionally test the validity of our inference approaches, we 

ill define the quantity 

 = 

η − η̄

σ ( η) 
, (36) 

here η is an inferred parameter from a specific fit, η̄ is the mean
rom all the fits, and σ ( η) is the error estimation from a specific
t. The distribution of quantity x is called a pull distribution. If η
ollows a Gaussian distrib ution, the distrib ution of x will form a
ormal distribution with x̄ = 0 and σ ( x ) = 1. 
For the mock covariance, we fit the 1500 available samples, while

or the Mohammad–Perci v al jackknife and for the fitted jackknife
MNRAS 527, 9048–9060 (2024) 
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Figure 9. Pull distributions for different covariance estimation techniques 
with results from fits on various lognormal mocks, shown for 3 different 
number densities indicated at the top in (Mpc h −1 ) 3 . Line colours follow 

those in Fig. 7 . 

Table 1. For each of the estimation methods we tabulate the standard 
deviation σ of ( f σ8 i − f σ8 ) /σi ( f σ8 ), o v er independent fits, i . For the mock 
covariance method σ ≈ 1 (as expected when all the fits are performed 
consistently with the same covariance), for the fitted covariance method it is 
also quite close to unity, but for the jackknife method σ > 1.4, which shows 
a much higher degree of deviation from the truth. 

n̄ ( z)( h 3 Mpc −3 ) Mock Mohammad–Perci v al Fit 

2 × 10 −4 1.03 1.40 1.05 
5 × 10 −4 0.99 1.42 1.05 
15 × 10 −4 1.00 1.56 1.08 
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Figure 10. The summary of the cosmological fits when using different 
numbers of mocks to obtain the fitted jackknife covariance: the default number 
of 50 mocks in red, 25 mocks in blue, and 10 mocks in green. The figure is 
organized like Fig. 7 . 
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0 random mocks are fitted using 30 realizations of the covariance,
nder the assumption that all of the covariance estimators are probing
he same underlying likelihood. 

Pull distributions for f σ 8 , α� , and α⊥ 

are presented in Fig. 9 for
ach number density of the lognormal mocks. The fitted jackknife and
ock covariance pull distrib utions ha ve Gaussian-shape with σ = 1

ormal distributions as expected, while the pull distributions obtained
hen using Mohammad–Perci v al jackknife are slightly wider, which

s due the covariance being less precise. We can see it quantitatively
n the Table 1 , where the standard deviations of the distributions from
ig. 9 are presented. That is due to various shifts of the distributions
btained from fitting to different jackknife covariances. This is not
he case for the fitted approach, ho we ver. 

Overall, for all the number densities, the performance of the fitted
ackknife method using 50 mocks is much better than that of the
tandard jackknife with the Mohammad–Perci v al correction, and,
ost importantly, it gives similar performance as the covariance
atrix created from 1500 mocks. 
We also test the performance of the approach when varying the

umber of mocks used for producing the fitted covariance. We test
sing 10, 25, and 50 mocks and report the results on the cosmological
ts in Fig. 10 , following the same methodology as explained before
or 50 mocks. The precision on the marginalized 2D contours of the
osmological parameters of interest starts to drop noticeably when
0 mocks are used, while it remains stable between 25 and 50 mocks.
NRAS 527, 9048–9060 (2024) 
.3 Approximate mocks 

pproximate mocks based on the extended Zeldovich approximation
escribed in Zhao et al. ( 2021 ) are used to mimic the DESI LRG
nd ELG samples. These mocks are expected also to reproduce the
lustering in the quasi-linear regime, although they are less accurate
han N -body simulations. They provide a better representation of the
eal surv e y and better reproduce the non-Gaussian effects, which
re not present in the lognormal mocks. The EZmocks used here
re built using a 4-parameter model that is calibrated to match the
lustering of N -body simulations, the 25 AbacusSummit simulations
esigned to meet the DESI requirements (Maksimova et al. 2021 ).
he four model parameters are: (1) ρc - critical density required

o o v ercome the background e xpansion; (2) ρexp - responsible for
he exponential cut-off of the halo bias relation; (3) b - argument
n the power-law probability distribution function P ( n ) = const ×
 

n of having n galaxies in the limited volume; (4) ν is the standard
eviation for the distribution modelling peculiar velocities. 
In this work, we use a set of 1000 EZmocks generated from N -

ody simulations with 6 Gpc h −1 box size. The fiducial cosmology
mployed is Planck 2018 (Aghanim et al. 2020 ), and the boxes are
enerated at z = 0.8 for the LRGs and z = 1.1 for the ELGs. We
se the redshift range of z = [0.8, 1.1] and the mocks are cut to
 footprint that reproduces that planned for the 5-year DESI data
n order to match the expected final precision of the mock-based
ovariance matrix. The comparison of the difference with the mock
ovariance for the single realisation of the jackknife covariance and
he fitted covariance is presented in Fig. 11 . 
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Figure 11. Comparison of the deviation of jackknife and fit covariances from 

the mock covariance multiplied by a square of separation for multipoles � = 

0, 2, 4 for the EZ LRG mocks. 

Figure 12. The quantity defined in equation ( 32 ) representing the bias of the 
specific covariance estimation approach plotted for three multipoles of LRG 

and ELG EZmocks (left and right panels, respectively). Solid lines are with 
Mohammad–Perci v al correction and dashed lines for the fitted jackknife. 
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On Fig. 12 , the relative bias of the diagonals of jackknife-based
 ersus mock-based co variances as defined by equation ( 32 ) are shown
or the LRG sample on the left and for the ELG sample on the
ight, in a similar way to Fig. 6 . First, The same trend is seen for
he Mohammad–Perci v al jackknife as we found with the lognormal 

ocks: the bias of the jackknife method with the Mohammad–
erci v al correction tends to increase with number density, so from
RG to ELG, and the fitted jackknife is still able to mitigate it.
o we ver, we can also notice that the differences are less pronounced

n the case of the EZmocks which is due to a bigger volume being
robed by the same number density. In Appendix A , we test the
mpact of the size of the footprint on the diagonal elements of the
ovariance matrices by considering the North Galactic Cap, South 
alactic Cap, and full footprint separately. 
As in the previous section, we also infer the values of the cos-
ological parameters f σ 8 , α� , and α⊥ 

, using the same methodology
s for the lognormal mocks. The results of the fits are shown in
ig. 13 where the first row shows the χ2 /dof distribution and the
ther rows show the marginalized 2D contours for best-fitting values 
nd uncertainties on the cosmological parameters. We confirm the 
ndings with the lognormal mocks that the fitted jackknife method 
rovides results which are in much better agreement with the mock-
ased method while the jackknife method with the Mohammad–
erci v al correction o v er-estimates clearly the uncertainties on all the
osmological parameters. The effect is also stronger as the number 
ensity of the galaxy sample increases. Moreo v er, as we hav e fewer
ocks than for the tests with the lognormal mocks, we can notice

hat the fitted covariance based on 50 mocks actually produces 
maller contours o v erall than the mock covariance which uses 1000
Zmocks. 
In Fig. 14 , we show the pull distribution as defined by equation

 36 ) for the cosmological parameters and the standard deviations of
he f σ 8 distribution, which is taken as an example, are presented on
able 2 . The results are also similar to the ones obtained with the

ognormal mocks: both the fitted jackknife and mock covariances 
roduce a Gaussian shape with σ = 1, while the standard deviation
f the pull distribution obtained using the Mohammad–Perci v al 
orrection for the jackknife method is larger ( σ = 1.5, 1.8 for LRG
nd ELG, respectively). This quantitative test thus demonstrates that 
he fitted jackknife method performs better in estimating an unbiased 
nd accurate covariance matrix for the two-point correlation function. 

Overall, throughout all of the tests for varying number densities, 
ifferent types of mocks, and number of fitted mocks, the fitted
ackknife approach shows a considerable impro v ement o v er the
orrection for standard jackknife proposed by Mohammad & Perci v al 
 2022 ). The fitted jackknife approach can achieve an unbiased
stimate of the covariance matrix with similar precision to a mock-
ased covariance but with the major advantage of requiring a much
maller number of mocks. 
MNRAS 527, 9048–9060 (2024) 
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M

Figure 14. Pull distributions for different covariance estimation techniques 
with results from fits on LRG and ELG mocks with line colours as in Fig. 9 . 

Table 2. Standard deviation σ of ( f σ8 ,i − f σ8 ) /σi ( f σ8 ), where i is a 
separate fit for each of the methods. We can see, that for the mock covariance, 
it is close to 1 (as it is supposed to be when all of the fits share the same 
covariance.), for fitted covariance it is closing on it, and for jackknife usually 
takes values > 1.4, which shows a much higher degree of deviation from what 
we assumed to be the truth. 

Surv e y Mock Mohammad–Perci v al Fit 

LRG 1.04 1.49 1.07 
ELG 1.08 1.80 1.07 
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 C O N C L U S I O N S  

btaining an accurate covariance matrix is a key ingredient for
ny cosmological analysis, and raises a significant challenge due
o the limitations in computing power for mock-based methods or in
he assumptions used in the analytical approaches. Additionally, as
as shown in a series of reviews comparing different approximate
ethods, they still have problems reproducing exactly the results

f more computationally intensive codes, especially in the non-
inear regime (Colavincenzo et al. 2018 ; Lippich et al. 2018 ; Blot
t al. 2019 ). Some works also focused on decreasing the number of
imulations needed to obtain a precise covariance matrix (Chartier
t al. 2021 ), for example combining the results from N -body and
pproximate simulations. 

In this work we have attempted to tackle this challenge with the
se of internal resampling methods. In Section 2 , we re vie w the
asics of the jackknife formalism for two-point correlation function
ovariance estimation and perform a test on a toy model which
onfirms the impro v ement brought by a correction to the standard
ackknife approach proposed by Mohammad & Perci v al ( 2022 ).
nstead of using an analytically fixed correction to some terms that
nter the jackknife covariance matrix, we propose to fit the correction
NRAS 527, 9048–9060 (2024) 
o a mock-based covariance obtained from a small number of mocks.
oreo v er, we also noticed an unconstrained term in the different pairs

hat comprise the jackknife estimate of the covariance matrix, which
e propose to account for by the same fitted jackknife procedure.

n Section 3 , we have tested this fitted jackknife covariance method
nd compared its performance with respect to the jackknife method
ith Mohammad–Perci v al correction and to a mock-based approach
sing lognormal mocks and approximate EZ mocks. We showed
hat the underestimation of the covariance obtained when using
he Mohammad–Perci v al correction increases with galaxy number
ensity while the fitted jackknife covariance remains unbiased. Per-
orming the cosmological inference showed that the fitted jackknife
ovariance based on 50 mocks performs with the same accuracy
s the covariance created from 1000–1500 mocks, both in terms of
recision (unbiased constraints) and accuracy (similar uncertainties).
here is also a significant decrease in computational power needed
nd we also stress that the method is simple to implement on top of the
tandard jackknife covariance computation. We provide a PYTHON

ackage that contains the implementation of the fitted jackknife
ethod: https:// github.com/ theonefromnowhere/ FitCov 
Future work may include further tests of such a fitted jackknife

ovariance estimation technique when applied to scales smaller than
20 h −1 Mpc. We plan to investigate the small scales in another
ork that aims at fitting the clustering of DESI Early Data with

his method and mock-based covariances in order to estimate the
alaxy–halo connection for different galaxy samples. A similar
echnique could also be developed in Fourier space, ho we ver, it
ould require a proper treatment of the window function effects when

plitting the footprint into subsamples, together with a significant
omputational effort. We leave for future work the application of
uch techniques to other statistics, such as three-point correlation
unction. Such a fitted jackknife covariance method can also be
eneficial for multi-tracer analysis where it could accommodate all
he degrees of freedom needed without requiring too many additional

ocks. We plan to continue this work and apply the multi-tracer
echnique on the upcoming DESI Bright Galaxy Surv e y (Zarrouk
t al. 2021 ; Hahn et al. 2022 ) whose high-density sampling make it a
hallenging test of the performance of the fitted jackknife covariance 
ethod. 
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PPENDI X  A :  I M PAC T  O F  T H E  SIZE  O F  T H E  

OOTPRI NT  

he lognormal and approximate EZmocks used in this work for 
esting the different covariance matrix estimates do not use the same
ize surv e y footprint. Giv en that for the same number density we see a
igger discrepancy between the jackknife method with Mohammad–
erci v al correction and the mock-based covariance matrix in the case
f the lognormal mocks than with the approximate mocks, we also
xplore the effect of varying the size of the footprint. We consider
he LRG EZmocks and compute the covariance matrix for the three

ethods (jackknife with Mohammad–Perci v al, fitted jackknife and 
ock-based) for the Southern Galactic Cap separately and compare 

he results with the ones for the full Y5 footprint. We keep the same
umber of jackknife regions in all cases. 
The results are displayed in Fig. A1 where we plot the relative

ias as defined by equation ( 32 ) between a jackknife method and
he mock-based covariance as a function of pair separation for the

onopole (top), quadrupole (middle), and hexadecapole (bottom). 
he results for the SGC are shown in orange and the ones for the

ull footprint in blue. Indeed, we see that the bias associated with the
ohammad–Perci v al approach is higher when a smaller footprint is
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