Samuel E. Penty
A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence
Penty, Samuel E.; Orton, Georgia R.F.; Black, Dominic; Pal, Robert; Zwijnenburg, Martijn A.; Barendt, Timothy A.
Authors
Georgia R.F. Orton
Dominic Black dominic.j.black@durham.ac.uk
Postdoctoral Research Associate
Professor Robert Pal robert.pal@durham.ac.uk
Professor
Martijn A. Zwijnenburg
Timothy A. Barendt
Abstract
Macrocycles containing chiral organic dyes are highly valuable for the development of supramolecular circularly polarized luminescent (CPL) materials, where a preorganized chiral framework is conducive to directing π–π self-assembly and delivering a strong and persistent CPL signal. Here, perylene diimides (PDIs) are an excellent choice for the organic dye component because, alongside their tunable photophysical and self-assembly properties, functionalization of the PDI’s core yields a twisted, chiral π-system, capable of CPL. However, configurationally stable PDI-based macrocycles are rare, and those that are also capable of π–π self-assembly beyond dimers are unprecedented, both of which are advantageous for robust self-assembled chiroptical materials. In this work, we report the first bay-connected bis-PDI macrocycle that is configurationally stable (ΔG⧧ > 155 kJ mol–1). We use this chirally locked macrocycle to uncover new knowledge of chiral PDI self-assembly and to perform new quantitative CPL imaging of the resulting single-crystal materials. As such, we discover that the chirality of a 1,7-disubstituted PDI provides a rational route to designing H-, J- and concomitant H- and J-type self-assembled materials, important arrangements for optimizing (chir)optical and charge/energy transport properties. Indeed, we reveal that CPL is amplified in the single crystals of our chiral macrocycle by quantifying the degree of emitted light circular polarization from such materials for the first time using CPL-Laser Scanning Confocal Microscopy.
Citation
Penty, S. E., Orton, G. R., Black, D., Pal, R., Zwijnenburg, M. A., & Barendt, T. A. (2024). A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence. Journal of the American Chemical Society, 146(8), 5470-5479. https://doi.org/10.1021/jacs.3c13191
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 31, 2024 |
Online Publication Date | Feb 14, 2024 |
Publication Date | Feb 28, 2024 |
Deposit Date | Feb 8, 2024 |
Publicly Available Date | Feb 23, 2024 |
Journal | Journal of the American Chemical Society |
Print ISSN | 0002-7863 |
Electronic ISSN | 1520-5126 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 146 |
Issue | 8 |
Pages | 5470-5479 |
DOI | https://doi.org/10.1021/jacs.3c13191 |
Public URL | https://durham-repository.worktribe.com/output/2229136 |
Files
Published Journal Article
(4.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Published Journal Article (Advance Online Version)
(4.5 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Hierarchical self-assembly in an RNA-based coordination polymer hydrogel
(2023)
Journal Article
The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search