Willem Elbers willem.h.elbers@durham.ac.uk
Postdoctoral Research Associate
Willem Elbers willem.h.elbers@durham.ac.uk
Postdoctoral Research Associate
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
Professor Adrian Jenkins a.r.jenkins@durham.ac.uk
Professor
Professor Baojiu Li baojiu.li@durham.ac.uk
Professor
Silvia Pascoli
Jens Jasche
Guilhem Lavaux
Volker Springel
The Cosmic Neutrino Background (CNB) encodes a wealth of information, but has not yet been observed directly. To determine the prospects of detection and to study its information content, we reconstruct the phase-space distribution of local relic neutrinos from the three-dimensional distribution of matter within 200 h-1 Mpc of the Milky Way. Our analysis relies on constrained realization simulations and forward modelling of the 2M++ galaxy catalogue. We find that the angular distribution of neutrinos is anti-correlated with the projected matter density, due to the capture and deflection of neutrinos by massive structures along the line of sight. Of relevance to tritium capture experiments, we find that the gravitational clustering effect of the large-scale structure on the local number density of neutrinos is more important than that of the Milky Way for neutrino masses less than 0.1 eV. Nevertheless, we predict that the density of relic neutrinos is close to the cosmic average, with a suppression or enhancement over the mean of (-0.3%, +7%, +27%) for masses of (0.01, 0.05, 0.1) eV. This implies no more than a marginal increase in the event rate for tritium capture experiments like PTOLEMY. We also predict that the CNB and CMB rest frames coincide for 0.01 eV neutrinos, but that neutrino velocities are significantly perturbed for masses larger than 0.05 eV. Regardless of mass, we find that the angle between the neutrino dipole and the ecliptic plane is small, implying a near-maximal annual modulation in the bulk velocity. Along with this paper, we publicly release our simulation data, comprising more than 100 simulations for six different neutrino masses.
Elbers, W., Frenk, C. S., Jenkins, A., Li, B., Pascoli, S., Jasche, J., …Springel, V. (2023). Where shadows lie: reconstruction of anisotropies in the neutrino sky. Journal of Cosmology and Astroparticle Physics, 2023(10), Article 010. https://doi.org/10.1088/1475-7516/2023/10/010
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 11, 2023 |
Online Publication Date | Oct 5, 2023 |
Publication Date | 2023 |
Deposit Date | Jan 23, 2024 |
Publicly Available Date | Jan 23, 2024 |
Journal | Journal of Cosmology and Astroparticle Physics |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 2023 |
Issue | 10 |
Article Number | 010 |
DOI | https://doi.org/10.1088/1475-7516/2023/10/010 |
Public URL | https://durham-repository.worktribe.com/output/2162254 |
Published Journal Article
(6 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Higher order initial conditions with massive neutrinos
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search