Skip to main content

Research Repository

Advanced Search

Updating Turbomachinery Aerodynamics Teaching On an Undergraduate Course Using 3D Design Tools

Ingram, Grant L.

Updating Turbomachinery Aerodynamics Teaching On an Undergraduate Course Using 3D Design Tools Thumbnail


Authors



Abstract

This paper outlines the update of a turbomachinery course to cover 3D aerodynamics using a Reynolds Averaged-Navier Stokes solver. Prior to the activities outlined in this paper the course was taught in a conventional way with a series of lectures and a timed, written, open book examination in a formal exam setting. Students were equipped with a calculator and set of notes including correlations from Howell and Soderberg. This limited the depth of any aerodynamic problem they could get through and so they were restricted to simple design or analysis exercises.

The genesis of the course update was the release in 2017 of “MULTALL OPEN” [1] a freely available turbomachinery design system and this was adopted as the course software - although other software choices were considered.

Students now produce two turbomachinery designs during the course. These are both based on the J85 turbojet - largely to keep cycle calculations to a minimum but it was also important to ensure that students recognise that they were completing a real engineering task. The first task was a 3D aerodynamic design of multi-stage turbine which includes compressible flow, tip clearance and stacking techniques such as lean or sweep. The second task was a midspan (2D) compressor design. Assessment was by means of a short report where the best students report on their design choices, provide critical analysis of the design using appropriate post-processing techniques and compare their designs to the state of the art in the wider literature.

As well as describing the successes and challenges of the update to 3D design methods the paper provides some guidance for educators thinking about adopting a similar approach.

Citation

Ingram, G. L. (2023). Updating Turbomachinery Aerodynamics Teaching On an Undergraduate Course Using 3D Design Tools. Journal of Engineering for Gas Turbines and Power, https://doi.org/10.1115/1.4064150

Journal Article Type Article
Acceptance Date Nov 21, 2023
Online Publication Date Nov 29, 2023
Publication Date Nov 29, 2023
Deposit Date Jan 15, 2024
Publicly Available Date Jan 15, 2024
Journal Journal of Engineering for Gas Turbines and Power
Print ISSN 0742-4795
Electronic ISSN 1528-8919
Publisher American Society of Mechanical Engineers
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1115/1.4064150
Public URL https://durham-repository.worktribe.com/output/2146709

Files




You might also like



Downloadable Citations