Professor Steve Abel s.a.abel@durham.ac.uk
Professor
Running of gauge couplings in string theory
Abel, Steven; Dienes, Keith R.; Nutricati, Luca A.
Authors
Keith R. Dienes
Luca Nutricati luca.a.nutricati@durham.ac.uk
PGR Student Doctor of Philosophy
Abstract
In this paper we conduct a general, model-independent analysis of the running of gauge couplings within closed string theories. Unlike previous discussions in the literature, our calculations fully respect the underlying modular invariance of the string and include the contributions from the infinite towers of string states which are ultimately responsible for many of the properties for which string theory is famous, including an enhanced degree of finiteness and UV/IR mixing. In order to perform our calculations, we adopt a formalism that was recently developed for calculations of the Higgs mass within such theories, and demonstrate that this formalism can also be applied to calculations of gauge couplings. In general, this formalism gives rise to an “on-shell” effective field theory (EFT) description in which the final results are expressed in terms of supertraces over the physical string states, and in which these quantities exhibit an EFT-like “running” as a function of an effective spacetime mass scale. We find, however, that the calculation of the gauge couplings differs in one deep way from that of the Higgs mass: while the latter results depend on purely on-shell supertraces, the former results have a different modular structure which causes them to depend on off-shell supertraces as well. In some regions of parameter space, our results demonstrate how certain expected field-theoretic behaviors can emerge from the highly UV/IR-mixed environment. In other situations, by contrast, our results give rise to a number of intrinsically stringy behaviors that transcend what might be expected within an effective field theory approach.
Citation
Abel, S., Dienes, K. R., & Nutricati, L. A. (2023). Running of gauge couplings in string theory. Physical Review D, 107(12), Article 126019. https://doi.org/10.1103/physrevd.107.126019
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 27, 2023 |
Online Publication Date | Jun 21, 2023 |
Publication Date | 2023-06 |
Deposit Date | Jan 4, 2024 |
Publicly Available Date | Jan 4, 2024 |
Journal | Physical Review D |
Print ISSN | 2470-0010 |
Electronic ISSN | 2470-0029 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 107 |
Issue | 12 |
Article Number | 126019 |
DOI | https://doi.org/10.1103/physrevd.107.126019 |
Public URL | https://durham-repository.worktribe.com/output/2079616 |
Files
Published Journal Article
(831 Kb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
You might also like
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Cosmic Inflation and Genetic Algorithms
(2022)
Journal Article
Ising Machines for Diophantine Problems in Physics
(2022)
Journal Article
Completely quantum neural networks
(2022)
Journal Article
Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search