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In this paper we conduct a general, model-independent analysis of the running of gauge couplings within
closed string theories. Unlike previous discussions in the literature, our calculations fully respect the
underlying modular invariance of the string and include the contributions from the infinite towers of string
states which are ultimately responsible for many of the properties for which string theory is famous,
including an enhanced degree of finiteness and UV=IR mixing. In order to perform our calculations, we
adopt a formalism that was recently developed for calculations of the Higgs mass within such theories, and
demonstrate that this formalism can also be applied to calculations of gauge couplings. In general, this
formalism gives rise to an “on-shell” effective field theory (EFT) description in which the final results are
expressed in terms of supertraces over the physical string states, and in which these quantities exhibit an
EFT-like “running” as a function of an effective spacetime mass scale. We find, however, that the
calculation of the gauge couplings differs in one deep way from that of the Higgs mass: while the latter
results depend on purely on-shell supertraces, the former results have a different modular structure which
causes them to depend on off-shell supertraces as well. In some regions of parameter space, our results
demonstrate how certain expected field-theoretic behaviors can emerge from the highly UV=IR-mixed
environment. In other situations, by contrast, our results give rise to a number of intrinsically stringy
behaviors that transcend what might be expected within an effective field theory approach.
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I. INTRODUCTION AND MOTIVATION

String theory is widely regarded as providing the
ultimate “UV completion” of theories which successfully
describe experimental phenomena at lower energy scales.
Such theories include the Standard Model as well as its
various extensions. However, it is not always clear how one
might draw an explicit map between these full string
theories on the one hand and observable low-energy
phenomena on the other. Because the fundamental
scale of string theory is normally considered to be unreach-
ably remote, and because the particle spectrum of the string
is generally quantized in units of this scale, one tradition-
ally attempts to extract low-energy phenomenological

predictions from string theory by focusing on the effects
associated with only the lightest of the string modes.
Unfortunately, this approach towards string phenom-

enology robs us of the full power of string theory to provide
new insights into low-energy phenomena. String theory, as
a theory of extended objects, does not merely produce light
states—it also gives rise to infinite towers of massive states
which are also an intrinsic part of the string spectrum.
Indeed, the “stringiness” of string theory—i.e., the funda-
mental features of string theory that transcend our field-
theoretic expectations and therefore have the power to
suggest new solutions to old puzzles—lies within these
states. By disregarding these states and their accumulated
contributions to low-energy physics, we are severing the
link between the UV-complete theory and its low-energy
phenomenology. This reduces us to working within an
effective field theory (EFT) whose relevant operators are
very hard to explain.
For this reason, it may be argued that a proper approach

to understanding many of the low-energy phenomenologi-
cal implications of string theory is one in which these
infinite towers of states are retained and their effects are
incorporated in a natural way throughout our calculations.
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Indeed, the effects of such states are likely to be the most
relevant for fundamental phenomenological questions—
such as hierarchy problems—which focus on the difficul-
ties of maintaining a peaceful coexistence of both light and
heavy scales within a quantum-mechanical universe.
One clue as to the power of these infinite towers of

states is that string theories generally have finiteness
properties that transcend what can be expected in field
theory. One normally attributes these finiteness properties
to the extended nature of the string—a feature lacking in
theories based on point particles—but this extended nature
of the string is precisely what gives rise to these infinite
towers of states. For perturbative closed strings (which will
be our main focus throughout this paper), worldsheet
modular invariance is the exact fundamental symmetry
which governs these states and their interactions. Thus,
modular invariance holds the key to much of the stringiness
of string theory and the finiteness (or softened divergences)
associated with its low-energy phenomenological predic-
tions. However, modular invariance also leads to much
more, including a unique and surprising form of UV=IR
mixing that can severely distort the validity of effective
field theories, even at low energies where one might have
assumed EFT-based approaches to hold.
For this reason, it is important to develop fully modular-

invariant methods of extracting low-energy phenomenologi-
cal predictions from string theory. By their very nature, these
are methods in which the full towers of string states play an
important role and cannot be neglected. It is then hoped that
the inclusion of these infinite towers of states and the
preservation of the underlying modular symmetry can lead
to new ways of approaching long-standing phenomenologi-
cal puzzles. Indeed, as originally advocated in Ref. [1], this
might be one route towards developing nontraditional
approaches towards addressing hierarchy problems.
In this paper, we shall calculate the running of the one-

loop gauge couplings within string theory. This is an old
and classic topic within string phenomenology, but we shall
employ a formalism for doing this calculation which fully
respects modular invariance and which thereby incorpo-
rates all of the “magic” to which string theory gives rise. We
shall begin in Sec. II by reviewing the framework [2] within
which we shall perform this calculation. We shall also
summarize the prior results in this field and highlight the
ways in which our approach (and our eventual results) will
be different. Section III then forms the main body of this
paper. Within this section, we shall systematically perform
our calculations, ultimately developing a completely gen-
eral picture of how gauge couplings run within four-
dimensional closed string theories. Along the way we shall
also discuss several new results which may have
wider applicability beyond our specific gauge-coupling
calculation. These include new theorems concerning the
cancellations of various supertraces of modular-invariant
operators. We shall also discuss the effects of entwinement,

a phenomenon which emerges within the context of our
gauge-coupling calculation and which shifts the meaning of
“physicality” when characterizing different states in the
string spectrum. We shall then summarize our main results
and possible directions for future research in Sec. IV.

II. PRELIMINARIES: OUR FRAMEWORK AND
CONNECTION TO PRIOR LITERATURE

In Ref. [2], a framework was developed for performing
calculations of the Higgs mass in a fully modular-invariant
way. As discussed there, this framework is completely
general and can be applied to any string model (vacuum
state). Moreover, although the focus within Ref. [2] centered
around calculations of the Higgs mass, this framework
can be applied to numerous quantities of phenomenological
interest, including the running of the gauge couplings.
Explicitly performing such a calculation is thus the primary
goal of this paper.
In this section, we shall begin by reviewing the salient

features of this framework and the various steps that are
involved. With these steps explicitly elucidated, we shall
then discuss prior calculations of the running gauge
couplings that exist in the literature—including the classic
calculation of Kaplunovsky [3]—and discuss precisely
which parts of those prior calculations preserve modular
invariance and which parts do not. We shall then outline the
primary goals of this paper within this language.

A. Our analysis framework

Within the framework developed in Ref. [2], the calcu-
lation of a given low-energy quantity ζ proceeds through a
number of distinct steps. These steps are illustrated sche-
matically in Fig. 1. For clarity we shall now enumerate
these steps individually although many of them are deeply
connected to each other and may be performed simulta-
neously. Explicit examples of each step will be given later
in this section.
(1) As a starting point, one constructs what may be

considered to be the “string-theoretic” equivalent of
the one-loop field-theoretic contributions to the
relevant quantity ζ coming from each of the string
states. In doing this, one must sum over the con-
tributions from the infinite towers of string states,
regardless of their masses. This is a sum of the
contributions from the entire tower of states as they
propagate around the worldsheet torus, with these
contributions weighted appropriately by the naive
vertex factors corresponding to their charges and
couplings. However, even though we have summed
over the entire string spectrum, the resulting ex-
pression may not be modular invariant.

(2) Second, if needed, one then performs a “modular
completion” of the above expression for ζ. This will
generally require the introduction of additional
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terms which may be interpreted as coming from extra
intrinsically stringy effects such as gravitational
backreactions. In such situations, the tight constraints
of modular invariance render these modular com-
pletions fairly unique. Thus, after this step, one has
obtained a general, fully modular-invariant, string-
theoretic expression for the quantity ζ under study.

One could, in principle, stop here. However, one natural
question that arises is whether this expression for ζ is finite,
or whether it might diverge in certain string backgrounds.
Because this quantity is fully modular invariant, this
expression will already exhibit the elimination or softening
of the divergences that would have otherwise been expected
in field theory. Thus, the divergence structure of ζ might be
very different from what one would expect in ordinary
quantum field theory.
We then have different options, depending on whether ζ

is finite or divergent.
(3) If the quantity resulting from Step 2 is potentially

divergent, one must regulate this quantity in a
manner which is consistent with modular invariance.
(Indeed, any regulator which breaks modular invari-
ance is likely to introduce precisely the sorts of
spurious effects we are hoping to avoid.) This
passage from the divergent quantity ζ to the regulated

quantity ζ̂ is indicated as Step 3 within Fig. 1. Thus,
after this step, one has a fully string-theoretic (and
hence modular-invariant) expression for ζ which is
also finite. We shall let ζ̂ denote this finite, regulated
quantity. In general, ζ̂ will depend on a regulator
parameter a or collections of parameters faig. The
resulting regulated quantity ζ̂ðaiÞ will then be finite
for all faig except those limiting values of ai which
correspond to removing the regulator.

(4) Alternatively, if the quantity resulting from Step 2 is
finite, we have two possibilities. One possibility is to
nevertheless choose to regulate this quantity in the
same way as in Step 3. This then deforms ζ into
another finite quantity ζ̂ðaiÞ which remains finite
even in the limit when the regulator is removed. This
is shown as Step 4 within Fig. 1.

(5) Finally, if the quantity resulting from Step 2 is finite,
an alternative possibility is to simply recognize that
no regulation is needed. In that case, one can forego
the regulator entirely and simply retain the expres-
sion obtained in Step 2. We indicate this choice as
Step 5 within Fig. 1.

At this stage (green boxes in Fig. 1), we have a quantity ζ̂
which is fully modular invariant and finite. This quantity
will depend on regulator parameters ai if we have
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FIG. 1. Distinct steps associated with our analysis of an arbitrary physical quantity, as discussed in the text. The particular sequence of
steps to be followed depends on the goal of the analysis. Particularly relevant results are those in the lower portions of this sketch, in
which our physical quantity is expressed purely in terms of contributions from on-shell, physical string states and also in a form which
runs as a function of a spacetime mass scale μ.
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employed Steps 3 or 4, but will be independent of ai if we
have followed Step 5.
There are now several different options for how one

might proceed. These different paths ultimately correspond
to recasting the finite expression ζ̂ obtained in Steps 3
through 5 in different forms that are useful for different
purposes.
(6) If we are interested in extracting an EFT-like “run-

ning” for ζ̂ðaiÞ, we can start from Step 3 or Step 4 and
proceed to identify an appropriate combination fðaiÞ
of the ai-parameters with a spacetime scale μ. As
discussed in Ref. [2], such an identification breaks
modular invariance by adopting a particular EFT-like
direction for spacetime “UV” versus “IR” physics
(i.e., a particular UV=IR direction for μ) in terms
of the otherwise UV=IR-blind worldsheet combi-
nation fðaiÞ. This step nevertheless respects all
other aspects of the modular symmetry, and can
be viewed as merely breaking the modular sym-
metry spontaneously. One then obtains a running
quantity ζ̂ðμÞ. Indeed, this is the step at which we
first introduce the notion of a spacetime energy scale
into the theory.

All expressions up to this point receive explicit contri-
butions from the full towers of string states. These include
not only physical, “on-shell” level-matched states (whose
left- and right-moving mass contributions are equal), but
also unphysical “off-shell” states (whose left- and right-
moving mass contributions are unequal). Note that the off-
shell states can only appear within loops, and thus cannot
serve as in-states or out-states in any string amplitude.
Indeed, it is the on-shell states which have field-theory
analog, while the off-shell states are intrinsically stringy.
Thus, if our goal for comparison purposes is to recast our
string results into an on-shell form which is as close as
possible to what might arise in field theory, we would like to
rewrite ζ̂ in terms of the contributions from only the
physical, on-shell states as fully as possible.
To do this, we can utilize certain methods derived from

modular-function theory which involve the so-called
“Rankin-Selberg” transform [4–6]. The mathematics behind
this transform is reviewed in Ref. [2] and ultimately allows
us to express a one-loop string-theoretic amplitude as the
residue of a deformed field-theoretic amplitude, evaluated at
a location in the complex plane associated with the
deformation parameter where the field-theoretic amplitude
has a pole. This relation between a string amplitude and a
(deformed) field-theory amplitude then enables us to obtain
an expression for the string amplitude which involves
supertraces over the contributions from only the physical
string states.
(7) If we perform a Rankin-Selberg transform starting

from the results of Step 3, 4, or 5 (green boxes in
Fig. 1), we then obtain corresponding results (orange
boxes in Fig. 1) which involve supertraces over only

the physical string states. Such results preserve
modular invariance fully and represent an alterna-
tive—and often more transparent— formulation for ζ̂
which enables a direct comparison with what might
have been expected in field theory. In particular, if we
apply the Rankin-Selberg transform to the results of
Steps 3 or 4, we obtain results which also depend on
our regulator parameters ai. However, if we apply the
Rankin-Selberg transform to the results of Step 5, our
result depends on the physical supertraces only and
does not involve any regulator parameters (orange
box with red border in Fig. 1). This may then be
viewed as our final result for the string quantity ζ̂—
one which is fully modular invariant and involves
only the supertraces over physical string states.

(8) Alternatively, if we calculate the Rankin-Selberg
transform of the results of Step 6 (blue box in
Fig. 1)—or equivalently identify fðaiÞ with μ within
the results of Step 7 (upper two orange boxes in
Fig. 1)—we obtain an expression for ζ̂ðμÞ in which
the supertraces over the physical string states
govern the running of ζ̂ðμÞ. This is indicated by
the purple box with the red border in Fig. 1. As
discussed in Ref. [2], these results preserve modular
invariance as fully as possible and yet resemble as
closely as possible the running of physical quantities
in field theory. This result thus describes ζ̂ as a
running quantity, where the running is now gov-
erned purely by the supertraces of the physical
string states. This formulation for ζ̂ðμÞ is particu-
larly useful for studying the maximal extent to which
an EFT description of ζ̂ðμÞ at low energies emerges
and remains valid within the full modular-invariant
string theory.

The most important results of this analysis are those
which are indicated in the red-bordered boxes in the
lower right portion of Fig. 1. As discussed above, these
results respectively express our original quantity in terms of
the supertraces over only the physical states in the string
spectrum, and also describe how this quantity runs as a
function of a spacetime energy scale μ. Indeed, the limit in
which the regulator is removed will typically correspond to
taking the deep-IR limit μ → 0 (or equivalently the deep-
UV limit μ → ∞, given that modular invariance requires an
invariance under the scale duality μ → M2

s=μ, as originally
pointed out in Ref. [2]). In this limit, the result of Step 8
reduces to the regulator-independent result of Step 7.
Even though we have broken this analysis procedure into

distinct steps, we stress that many of these steps are deeply
connected and can be performed simultaneously. For
example, as discussed in Ref. [2], it is possible to proceed
directly from the results of Step 2 to those of Step 7
through a so-called “regulated Rankin-Selberg” transform.
Likewise, if we are not interested in interpreting our
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physical quantities as “running” with respect to a spacetime
scale μ, we need never be concerned with Step 6 or Step 8.

B. Prior literature: Results to date

To date, this procedure has been applied to two different
quantities ζ of phenomenological interest: the one-loop
cosmological constant Λ, and the one-loop Higgs massm2

ϕ.
Here the Higgs field ϕ is identified as any scalar field ϕ
whose fluctuations can affect the masses of other string
states throughout the string spectrum. We shall now present
some of the main results of these prior analyses. These
results will not only serve to illustrate the different steps of
this procedure but will also be relevant later in this paper.
For the one-loop closed-string cosmological constant

(vacuum energy) Λ, Step 1 requires that we begin with the
standard expression [7] which is nothing other than the one-
loop string partition function ZðτÞ integrated over the
fundamental domain F of the modular group. Indeed, if
we define the standard four-dimensional one-loop string
amplitude for any operator insertion A as

hAi≡
Z
F

d2τ
τ22

τ−12
X
m;n

ð−1ÞFAmnq̄mqn; ð2:1Þ

then the corresponding one-loop vacuum energy Λ is
nothing but

Λ ¼ −
M4

2
h1i: ð2:2Þ

Here τ is the one-loop torus modular parameter with real
and imaginary parts τ1;2 respectively; q≡ e2πiτ; F is the
fundamental domain of the modular group; the sum

P
m;n is

over all discrete string states with right- and left-moving
worldsheet energies ðm; nÞ, normalized so that the corre-
sponding spacetime mass M2 is given by M2 ¼ 1

2
ðM2

R þ
M2

LÞ ¼ 2
α0 ðmþ nÞ where the string scale Ms and reduced

string scaleM are given byMs ≡ 2πM ¼ 1=
ffiffiffiffi
α0

p
; F is the

spacetime fermion number of each state contributing in the
sum; and Amn are the eigenvalues of the operator A when
acting on each ðm; nÞ string state. Note that d2τ=τ22 is the
modular-invariant measure for the τ-integration, while the
extra prefactor τ−12 within the integrand of Eq. (2.1)
emerges from the integration over the continuum of modes
associated with the uncompactified spacetime coordinates
and reflects the fact that the four-dimensional string
partition function, prior to insertions, has modular weight
k ¼ −1. The curved shape of the lower portion of the
fundamental domain F implies that the amplitude in
Eq. (2.1) receives contributions from not only the physical
(level-matched) “on-shell” string states withm ¼ n but also
the unphysical (intrinsically stringy) “off-shell” states with
m ≠ n. Indeed, we see from Eq. (2.2) that for the cosmo-
logical constant Λ the only “insertion” into the partition-

function in Eq. (2.1) is given by A ¼ 1, the identity
operator. This makes sense for a vacuum energy, since
all states contribute equally and independently of their
possible charges or other characteristics.
The result in Eq. (2.2) thus represents Step 1. Given that

A ¼ 1, this expression is fully modular invariant and no
modular completion is needed. This result then carries over
to Step 2. Proceeding to Step 3, we ask whether this
quantity is divergent. In principle, there are indeed certain
states within the string spectrum which could cause
divergences: these are physical tachyons for which
m ¼ n < 0. Since the presence of such tachyons destabil-
izes the theory, we shall restrict our attention to string
theories in which such states are absent. It then follows that
Λ is finite. According to the procedure we have sketched in
Fig. 1, we then have two options which amount to whether
or not we wish to impose a regulator. For considerations of
Λ alone, there is no need to do so, since Λ is already finite.
We shall therefore carry this expression for Λ unchanged
into Step 5.
Our final step (Step 7 within Fig. 1) is to evaluate the

Rankin-Selberg transform of the expression in Eq. (2.2).
This is not difficult, and leads immediately to a result first
derived in Ref. [8]:

Λ ¼ 1

24
M2 StrM2 ð2:3Þ

where our supertrace ‘Str’ notation indicates a statistics-
weighted trace over the spectrum of only physical string
states [8]:

StrA≡ lim
y→0

X
states i

ð−1ÞFiAie−yα
0M2

i ð2:4Þ

with the index i labeling the different physical states in the
spectrum. This definition of the supertrace will be dis-
cussed further in Sec. III. Intimately connected with the
result in Eq. (2.3) and emerging from the same analysis is
also an additional constraint [8]

Str 1 ¼ 0: ð2:5Þ

The results in Eqs. (2.3) and (2.5) hold for any tachyon-free
closed string theory in four spacetime dimensions and even
generalize [8] to other dimensionalities as well, with
StrM2β ¼ 0 for all 0 ≤ β ≤ 1

2
ðD − 4Þ in general and with

ΛD ∼M2 StrMD−2 where ΛD is the corresponding one-
loop cosmological constant in D spacetime dimensions.
These results are truly remarkable. In ordinary four-

dimensional quantum field theory, we would expect that Λ
would be a divergent quantity for which Str 1 governs the
quartic divergence and StrM2 governs the quadratic
divergence. However, we now see that in a four-
dimensional tachyon-free modular-invariant string theory
Λ is actually finite and moreover that StrM2 gives its value.
Likewise, Str 1 actually vanishes.

RUNNING OF GAUGE COUPLINGS IN STRING THEORY PHYS. REV. D 107, 126019 (2023)

126019-5



These results are the consequence of a governing “mis-
aligned supersymmetry” [8,9] which has been proven to
exist within the spectra of all tachyon-free modular-invariant
string theories. Indeed, this symmetry indicates that bosonic
and fermionic string states must be distributed across the
infinite string spectrum in such a way that the spectrum is
either exactly spacetime supersymmetric (a “degenerate”
form of misaligned supersymmetry) or configured in a
precise mathematical way wherein any surplus of bosonic
states at a given mass level triggers the existence of an even
greater surplus of fermionic states at an even higher mass
level, which in turn triggers the existence of an even larger
surplus of bosonic states at an even higher mass level, and so
forth. The sizes of these alternating surpluses grow expo-
nentially as a function of mass, thereby explaining how even
a nonsupersymmetric string can remain consistent not only
with the Hagedorn transition but also with finite supertrace
results such as that in Eq. (2.3). Misaligned supersymmetry
thus lies at the heart of the remarkable finiteness properties
of closed strings [1,8,9] and will ultimately underpin the
results of this paper as well.
To date, the only other physical quantity which has been

studied within the full framework sketched in Fig. 1 is the
Higgs massm2

ϕ. This analysis was performed in Ref. [2], and
we shall outline the salient results here. In general, as stated
above, the Higgs will be viewed as any state whose VEV
affects the masses of at least some of the corresponding
string states. We shall work within the Higgsed phase of the
theory and accordingly assume that the Higgs field has a
nonzero VEV and is already sitting at the minimum of its
potential. Clearly the Higgs mass then corresponds to the
curvature of this potential at that minimum. In order to
calculate this curvature, we can regard the masses M2 of all
string states in the Higgsed phase to be functions of ϕ, where
ϕ parametrizes the fluctuations of the Higgs field around this
minimum. In complete analogy to Eq. (2.2), it then turns out
that [2] the one-loop Higgs mass can then be written as

m2
ϕ ¼ −

M2

2
hτ2X1 þ τ22X2i þ � � � ð2:6Þ

where the insertions X1 and X2 into the partition function
sum are given by

X1 ≡ −
1

4π
∂
2
ϕM

2

����
ϕ¼0

;

X2 ≡ 1

16π2M2
ð∂ϕM2Þ2

����
ϕ¼0

: ð2:7Þ

These insertions thus tally the effective Higgs “charges” (or
equivalently the contributions to the curvature of the
effective Higgs potential) from each state. Indeed, these
are the strengths with which each state couples to the Higgs,
as measured by the degree to which the mass of the state
responds to fluctuations of the Higgs VEV. The result in

Eq. (2.6) can thus serve as the starting point (Step 1) for our
analysis.
As shown in Ref. [2], the insertion of these nontrivial Xi

operators breaks the modular invariance due to a subtle
modular anomaly. As a result, a modular completion is
needed. It turns out [2] that the appropriate completion in
this case can be achieved by introducing an additional
constant into the operator insertions, so that Eq. (2.6) now
takes the fully modular-invariant (completed) form

m2
ϕ ¼ −

M2

2

�
ξ

4π2
þ τ2X1 þ τ22X2

�
ð2:8Þ

where ξ is an Oð1Þ parameter which describes the
way in which the particular Higgs field under study
is embedded within the corresponding string model.
Indeed, this extra term can be interpreted as arising from
the universal gravitational backreactions associated with
the direct Higgs couplings to the individual string states.
Equation (2.8) is therefore fully modular invariant and
serves as the result of Step 2. Note that use of our result in
Eq. (2.2) enables us to rewrite Eq. (2.8) in the form

m2
ϕ ¼ ξ

4π2
Λ
M2

−
M2

2
hτ2X1 þ τ22X2i; ð2:9Þ

thereby indicating the existence of a surprising string-
theoretic connection between the Higgs mass and the
cosmological constant [2]. It is intriguing that such rela-
tions join together precisely the two quantities whose
values lie at the heart of the two most pressing hierarchy
problems in modern physics.
In general, the quantity in Eq. (2.9) can diverge at most

logarithmically. This is also a striking result, indicating that
modular invariance has significantly softened what would
otherwise have been a field-theoretic quadratic divergence
of the Higgs mass. Moreover, we see that this quantity is
actually finite unless the string model in question happens
to contain a net number of massless X2-charged string
states. For simplicity, we shall therefore proceed under the
assumption that the net number of massless X2-charged
string states vanishes in the string model under discussion,
and merely note that the analysis presented in Ref. [2] is
completely general and considers all possible cases, includ-
ing those in which the net number of such states is nonzero.
Given these assumptions, we can now continue to

express these results in different forms. One possibility
is to proceed directly through Step 5 towards Step 7 by
taking the Rankin-Selberg transform of our modular-
complete result in Eq. (2.9). In this way, one finds that
the Higgs mass can generally be expressed in terms of the
contributions from only the physical string states [2]:

m2
ϕ ¼ 1

24
M2 Str½D2

ϕM
2ðϕÞ�

����
ϕ¼0

ð2:10Þ
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where we have defined the modular-covariant double-ϕ
derivative

D2
ϕ ≡ ∂

2
ϕ þ

ξ

4π2M2
: ð2:11Þ

The result in Eq. (2.10) is thus the Higgs-mass analog of the
Λ-result in Eq. (2.3).
Another possibility is to analyze how our string-theoretic

Higgs mass runs as a function of a spacetime mass scale μ.
For this purpose we start from the result in Eq. (2.9) and
proceed towards Step 4 by introducing a suitable regulator.
As discussed in Ref. [2], there are many requirements on
such regulators, chief among them that they be completely
modular invariant. One compelling class of such regulators
can be formulated by deforming our one-loop amplitudes

hAi → hAiĜ ð2:12Þ

where hAiĜ is defined exactly as in Eq. (2.1) except that the
integrand is now multiplied by an appropriate modular-
invariant regulator function Ĝðai; τÞ, with ai denoting the
internal regulator parameters. We then must demand that
Ĝðai; τÞ exhibit certain properties in order to ensure that we
have a sensible regulator. In particular, for such a regulator,
we demand that there exist a combination or function fðaiÞ
of regulator parameters such that taking fðaiÞ → 0 effec-
tively removes the regulator while taking any nonzero value
of fðaiÞ allows the regulator to suppress the unwanted
divergences but otherwise leave the theory intact as far as
possible. Given that all such divergences must come from
those portions of the integration region in which τ → τcusp
(where τcusp are the so-called “cusp” points τcusp ¼ i∞ or
τcusp ¼ p=q, where p; q ∈ Z), we thus have three require-
ments for suitable modular-invariant regulator func-
tions Ĝðai; τÞ:

(i) For all fðaiÞ > 0, we require that Ĝðai; τÞ → 0
sufficiently rapidly as τ → τcusp. This enables our
regulator to suppress divergences and yield a finite
one-loop string amplitude.

(ii) For all fðaiÞ > 0, we also require that Ĝðai; τÞ ≈ 1
when τ is sufficiently far away from the cusp points.
This ensures that our regulator, while suppressing
divergences near the cusp points, leaves the remain-
der of the theory intact as much as possible.

(iii) Finally, as fðaiÞ → 0, we require that Ĝðai; τÞ → 1
for all τ. This ensures the existence of a limit in
which our regulator is effectively removed and our
original theory is obtained.

We shall also need to require for consistency that ĜðτÞ satisfy
an additional algebraic identity [2] whose significance will
be discussed shortly.
In Ref. [2], a suitable modular-invariant regulator func-

tion Ĝðai; τÞ meeting all of these criteria was developed.
This regulator function will be discussed in detail in

Sec. III. However, using this regulator, we can then take
Step 4 by evaluating

m̂2
ϕðρ; aÞ ¼ −

M2

2

�
ξ

4π2
þ τ2X1 þ τ22X2

�
Ĝ
: ð2:13Þ

We then follow Step 6 by mapping to a spacetime mass
scale μ via the identification [2]

μ2 ¼ fðaiÞM2
s ; ð2:14Þ

after which we follow Step 8 by evaluating the Rankin-
Selberg transform. A detailed discussion of the Rankin-
Selberg procedure is provided in Ref. [2]. The end result of
this analysis yields our final on-shell result for the running
Higgs mass, expressed completely in terms of supertraces
over only physical string states. Indeed, this result takes the
form

m̂2
ϕðμÞ ¼ m̂2

ϕðμÞjX þ ξ

4π2M2
Λ̂ðμÞ ð2:15Þ

where the two different terms on the right side represent the
contributions ultimately stemming from the different terms
in Eq. (2.8).
The algebraic forms of these final results [2] are fairly

complicated (involving infinite sums of Bessel functions)
and thus not particularly illuminating. However, the total
result for the running Higgs mass m̂2

ϕðμÞ is plotted in
Fig. 3 of Ref. [2]. One important feature of this running is
a “scale-duality” invariance [2] under μ→M2

s=μ. As
discussed in Ref. [2], the emergence of scale duality
is a general phenomenon, an unavoidable consequence
of modular invariance and its corresponding UV=IR
symmetries.
The existence of scale duality nevertheless places an

additional constraint on potential regulator functions
Ĝðai; τÞ. Specifically, scale-duality symmetry in conjunc-
tion with the identification in Eq. (2.14) together require
that our regulator function Ĝðai; τÞ also exhibit an
invariance under any transformations on the parameters
ai for which fðaiÞ → 1=fðaiÞ. Phrased slightly differ-
ently, the transformation fðaiÞ → 1=fðaiÞ must be a
symmetry of the regulator. Otherwise, it would not be
possible to identify a spacetime mass scale μ consistent
with scale duality. Thus, while a regular function without
this additional symmetry might have been sufficient if our
only goal were to tame divergences, this extra symmetry
is required if we wish to further identify some combina-
tion fðaiÞ of regulator parameters with a spacetime mass
scale μ and thereby express our results as quantities that
run with μ.
Given the explicit expressions for m̂2

ϕðμÞjX and Λ̂ðμÞ in
Ref. [2], it is possible to verify that limμ→0 Λ̂ðμÞ ¼ Λ, as
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expected when the regulator is removed. Moreover, it turns
out that

m̂2
ϕðμÞjX ¼ ∂

2

∂ϕ2
Λ̂ðμ;ϕÞ

����
ϕ¼0

: ð2:16Þ

Indeed, as discussed in Ref. [2], this result holds inde-
pendently of the choice of regulator function Ĝðai; μÞ.
Given Eq. (2.15), we then have

m̂2
ϕðμÞ ¼

�
∂
2
ϕ þ

ξ

4π2M2

�
Λ̂ðμ;ϕÞ

����
ϕ¼0

¼ D2
ϕΛ̂ðμ;ϕÞjϕ¼0

; ð2:17Þ

whereupon taking the μ → 0 limit we find

lim
μ→0

m̂2
ϕðμÞ ¼ D2

ϕΛðϕÞjϕ¼0

¼ 1

24
M2 Str½D2

ϕM
2ðϕÞ�j

ϕ¼0
; ð2:18Þ

thereby matching the result for m2
ϕ from Step 7 in

Eq. (2.10). This matching is an important cross-check,
since taking μ → 0 corresponds to the removal of our
regulator. Indeed, pushing this further, we see that Λ and
m2

ϕ are related through the algebraic structure [2]

�Λ ¼ ΛðϕÞjϕ¼0

m2
ϕ ¼ D2

ϕΛðϕÞjϕ¼0;
ð2:19Þ

with this structure remaining intact even if we extend these
quantities to run as functions of μ. Finally, the second of
these relations suggests that we may view ΛðϕÞ as a Higgs
Coleman-Weinberg potential for ϕ (at least locally). This is
discussed further in Ref. [2].

C. Goals and results of this paper

As reviewed above, the one-loop cosmological constant
Λ and one-loop Higgs massm2

ϕ have already been analyzed
within the formalism we have presented, with the central
results outlined above. In this paper, by contrast, our goal is
to analyze a third quantity: the one-loop contributions to the
gauge couplings αi ≡ g2i =ð4πÞ associated with the various
gauge groups that might be present in a given string model.
For the gauge couplings, it turns out that certain steps in

the above procedure have already been performed. In a
seminal early paper [3], Kaplunovsky considered the so-
called “threshold corrections” that are required to match the
full string gauge couplings to an EFT at one loop and
constructed an expression for such threshold corrections
which we may regard as completing Step 1. He recognized
that this quantity generally diverges due to the contribu-
tions from certain massless states, and provided a procedure
for removing this divergence. Unfortunately, although

sufficient for certain purposes, this procedure was not
modular invariant. Indeed, we shall see that even the
starting point—the notion of a “threshold correction”—is
not modular invariant, as it artificially separates the con-
tributions of massless states from those of massive states.
This will be discussed further in Sec. III.
Later, in an important series of papers [10–12],

Kiritsis and Kounnas revisited this issue and developed a
properly modular-invariant regulator for this calculation. In
so doing, Kiritsis and Kounnas implicitly completed
Steps 2 and 3. Indeed, the regulator which we shall employ
in this paper (and which was employed in Ref. [2]) is built
upon the regulator they constructed. However, our regulator
has been generalized and modified in a certain critical way
which allows us to proceed to identify a corresponding
spacetime mass scale μ for all values of the regulator
parameters ai and thereby express the gauge couplings as
running quantities [2]. Specifically, the regulator function
used in Refs. [10–12] satisfied the two bulleted require-
ments above but did not exhibit the required symmetry
under fðaiÞ → 1=fðaiÞ which is critical for properly
identifying a running spacetime mass scale μ. This will
be corrected in our analysis in Sec. III.
More importantly, however, the primary purpose of this

paper is to bring this analysis of the gauge couplings to its
natural conclusion. In particular, we shall complete the
remaining steps in our procedure outlined above, and seek
to obtain an expression for the gauge couplings in terms of
the supertraces of the contributions from only the physical
string states. Interestingly, we shall find that this cannot be
done for all terms in our expressions because of the unique
modular structure of the gauge couplings. We shall therefore
spend considerable time discussing this issue, and we shall
develop a procedure through which these contributions can
nevertheless be written as supertraces over certain string
states. Wewill also study the running of the gauge couplings
as functions of a spacetime mass scale μ. This will enable us
to determine the properties—and also the limits of validity
—for any associated EFT describing the behavior of the
gauge couplings in closed string theories. In particular, we
will see how the running EFTemerges from our prescription
and evolves as various mass thresholds are crossed.

III. GAUGE COUPLINGS IN STRING THEORY:
GENERAL TREATMENT

We now turn to the principal goal of this paper: to utilize
the methods outlined above in order to study the behavior
of the one-loop contribution to the gauge coupling gG
corresponding to any spacetime gauge group G in closed
string theory. We shall normalize these couplings such that
the corresponding gauge-kinetic terms are given by

L ¼ −
1

4g2G
FðGÞ
μν FðGÞμν; ð3:1Þ
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and we shall isolate the one-loop contributions to gG by
evaluating these couplings gG to one-loop order and then
separating out the tree-level contributions. In general, these
quantities are related through

16π2

g2G

����total thru
one-loop
order

¼ 16π2

g2G

����
tree

þ ΔG ð3:2Þ

where ΔG denotes the one-loop contribution to 16π2=g2G.
Indeed, in string theory we know that gGjtree ∼ e−hϕi where
hϕi denotes the VEVof the dilaton ϕ. Our goal in this paper
is thus to study the properties of ΔG.

A. Operator insertions

In field theory, we know that ΔG receives contributions
from all of the states in our theory which transform in
nontrivial representations R of G. Indeed, for each such
state in the theory, the corresponding one-loop contribution
to ΔG is given by b · trRðQ2

GÞ, where
(i) Q2

G is the sum of the squares of the charges in the
Cartan subalgebra of G;

(ii) the trace tallies the values of Q2
G over all the states

within the representation R (following the conven-
tion that each CPT-conjugate particle/antiparticle
pair of states is counted only once); and

(iii) the numerical coefficient b encapsulates the Lorentz
helicity properties of the state, with b ¼ f1=3; 2=3;
−11=3g for Lorentz scalars, spinors, and vectors
respectively.

Indeed, we note that these b-coefficients are nothing but
b ¼ −4ð−1ÞFðS2 − 1=12Þ where S ¼ f0; 1=2; 1g is the
Lorentz spin of the corresponding state and where F is
the spacetime fermion number.
Given these observations, it is straightforward to

generate an analogous expression in string theory. Of
course, in string theory, our traces count all states in
the theory independently and thus tally each member
of a CPT-conjugate particle/antiparticle pair separately.
With this effective doubling of the conventions for our
traces, our field-theoretic b-coefficients are effectively
rescaled to become b ¼ f1=6; 1=3;−11=6g for Lorentz
scalars, spinors, and vectors respectively, or equivalently
b ¼ −2ð−1ÞFðS2 − 1=12Þ. At this stage, then, our QFT-
motivated expression forΔG in string theory can be expected
to take the form

ΔG ¼ −2hðS2 − 1=12ÞQ2
Gi ð3:3Þ

where the brackets signify the full one-loop amplitude of the
form given in Eq. (2.1). Indeed, we note from Eq. (2.1) that
these brackets already include the factor of ð−1ÞF as well as
the double sum

P
m;n which effects the sum over gauge-

group representations R and the traces overQ2
G within each

R. Furthermore, without loss of generality, the presence of a

gauge symmetry implies that our string states populate a
corresponding lattice of gauge charges. We can then
decompose

Q2
G ¼

X
l;l0

cðGÞll0QlQl0 ð3:4Þ

where the Ql component is the charge operator in the lth

lattice direction and where the coefficients cðGÞll0 describe
how the string gauge group G is embedded within the
charge lattice.
Equation (3.3) thus represents our Step 1 starting point

for our study of the one-loop contributions to the gauge
couplings. Indeed, we see that this quantity is written in
terms of the product of two insertions, Q2

G and S2 − 1=12,
and thus resembles as closely as possible the field-theory
result, only expressed in terms of a full one-loop string
amplitude. Note that if our theory is spacetime-super-
symmetric, then we are free to drop the factor of −1=12,
since the contributions from this term will be proportional
to Trð−1ÞF for each representation of the gauge group and
thus vanish. We shall nevertheless keep this factor for
generality.
According to the procedure outlined in Sec. II, our next

step is to perform a modular completion of this expression.
Clearly, there are two separate insertions in play: Q2

G and
S2 − 1=12. We shall discuss each of these in turn, since
neither insertion preserves the modular invariance of the
full string amplitude.
Let us first discuss the modular completion of Q2

G. In
general, it was shown in Ref. [2] that the product of any two
charge bilinears can be modular completed by substituting

QlQ0
l → QlQ0

l −
1

4πτ2
δl;l0 : ð3:5Þ

Given the embedding in Eq. (3.4), we thus find the modular
completion of Q2

G is given by

Q2
G → Q2

G −
ξ

4πτ2
ð3:6Þ

where ξ≡P
l c

ðGÞ
ll . Indeed, with this result, we see that ξ is

ultimately related to the affine level kG at which the gauge
group G is realized.
We now turn to the modular completion of the helicity

factor S2 − 1=12 in Eq. (3.3). In general, a given string
theory gives rise to infinite towers of states with higher and
higher spins. However, in the heterotic string, these states
can ultimately be organized in terms of the CFT sector from
which they arise, where the CFT in question is that
associated with the transverse right-moving Lorentz group
SOðD − 2Þ. In the heterotic string, there are only three such
sectors: the identity (or scalar) sector, the spinor sector, and
the vector sector. The ground states of these sectors have
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spins S ¼ f0; 1=2; 1g respectively. Loosely speaking, every
other string state can be viewed as a member of one of these
sectors in the sense that it can be realized through tensor
products of this vacuum state (or one of its CFT descend-
ants) with additional vector representations arising from
excitations of the left-moving coordinate bosons. In this
way, states with arbitrarily high spins can be generated.
Disregarding the contributions from the purely internal

degrees of freedom and the two transverse spacetime-
coordinate bosons, the contribution to the total partition
function from the states in each of these three sectors takes
the form Θ̄=η̄, where η is the Dedekind eta-function and
where Θ is given by

scalar∶ Θ ¼ 1

2
ðϑ3 þ ϑ4Þ;

spinor : Θ ¼ 1

2
ϑ2;

vector : Θ ¼ 1

2
ðϑ3 − ϑ4Þ: ð3:7Þ

Here ϑi are the three Jacobi theta-functions. Indeed, in each
of these cases we find that

Θ ∼ eπiτS
2ð1þ � � �Þ; ð3:8Þ

thereby already suggesting a relationship between S and a
modular derivative.
Given this, we now seek to understand how to incor-

porate the helicity factor S2 − 1=12 in a fully modular-
invariant way into the sum over string states. A direct string
calculation [3] tells us that the proper procedure to generate
the helicity part is to modify the total partition function of
the string theory in question, replacing

Θ̄
η̄
→

∂

∂τ̄

�
Θ̄
η̄

�
: ð3:9Þ

This is the result of a full string calculation, and thus
this replacement does not disturb the modular invariance
of the total partition function. In particular, the τ-
derivative d=dτ̄ is modular-covariant when acting on a
modular-covariant function of modular weight k ¼ 0

such as Θ̄=η̄. Thus, no further modular completion is
required after this replacement is implemented. Or, to
phrase this another way, the simple insertion S2 − 1=12
has been “modular completed” by instead implementing
the replacement in Eq. (3.9).
The issue that remains for us, however, is to express the

replacement in Eq. (3.9) as an insertion into the numerator
of the partition-function trace. Wewish to do this in order to
eventually express our results in terms of (weighted) traces
over our original string spectrum. To accomplish this, we
observe that

∂

∂τ̄

�
Θ̄
η̄

�
¼ 1

η̄

∂Θ̄
∂τ̄

þ Θ̄
∂

∂τ̄

1

η̄

¼ 1

η̄

	
∂Θ̄
∂τ̄

− Θ̄
∂

∂τ̄
log η̄




¼ 1

η̄

	
∂

∂τ̄
þ πi
12

Ē2ðτ̄Þ


Θ̄ ð3:10Þ

where in passing to the final line we have utilized the
identity

E2ðτÞ ¼
1

2πi
∂

∂τ
log η24ðτÞ ð3:11Þ

where E2ðτÞ is the normalized weight-two holomorphic
Eisenstein function

E2ðτÞ≡ 1 − 24
X∞
n¼1

σðnÞe2πinτ

¼ 1 − 24q − 72q2 − 96q3 − 168q4 − � � � ð3:12Þ

with σðnÞ≡P
djn d. We shall find it convenient to simplify

this notation slightly by writing E2ðτÞ ¼
P∞

n¼0 χnq
n where

χn ¼
�
1 n ¼ 0

−24σðnÞ n > 0:
ð3:13Þ

We thus see that the replacement in Eq. (3.9) is tantamount
to the insertion of the modular-covariant derivative D̄τ̄ into
that portion of the total partition-function trace correspond-
ing to the spacetime Lorentz group, where

Dτ ≡ ∂

∂τ
−
iπ
12

E2ðτÞ: ð3:14Þ

In this sense Dτ is the operator that represents S2 − 1=12 in
string theory.
As is evident from this discussion, the operator d=dτ̄

acting purely on Θ̄ represents the spin S2. Indeed, we can
identify the spin S as the “helicity charge” Q̄H of the state
relative to the spacetime Lorentz symmetry, where the
subscript H can be identified as that right-moving lattice
direction l whose trace yields Θ̄. We can therefore identify
Q̄2

H ¼ i
π ∂=∂τ̄, allowing us to express our modular com-

pletion in the form

Q̄2
H −

1

12
→ Q̄2

H −
1

12
Ē2ðτ̄Þ: ð3:15Þ

At first glance, it might have seemed from Eq. (3.5) that
the modular completion of Q̄2

H would simply be Q̄2
H →

Q̄2
H − 1=ð4πτ2Þ, just as occurred for the gauge charges.

However, the critical difference here is that we are not
seeking the modular completion of Q2

H; we are seeking the
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modular completion ofQ2
H − 1=12. It is the presence of the

extra term −1=12which induces the subtlety and ultimately
requires the Eisenstein function in Eq. (3.14). Although it
might have seemed that the extra shift −1=12 is only a pure
number and thus should be completely harmless, this
neglects the fact that we must preserve modular invariance.
While the insertion of S2 raises the modular weight of
the corresponding portion of the partition function by two,
the insertion of a pure number such as −1=12 does not
affect the modular weight at all. We thus cannot subtract
1=12 directly from S2 orQ2

H in a modular-invariant theory;
rather, the −1=12 must first be “modular completed” into
a modular function (or in this case, a quasimodular
function) of weight two. As it turns out, a theorem in
modular-function theory asserts that there is only one
(quasi)modular function of weight k ¼ 2: this is the
Eisenstein function E2ðτÞ. It is thus natural and expected
that the modular completion in Eq. (3.15) would involve
the Eisenstein function. Indeed, in this sense we may regard
E2=12 as the properly normalized modular completion of
1=12, with E2=12 ¼ 1=12þOðqÞ.
As noted above, the Eisenstein series E2 (unlike the

Eisenstein series E2k for k > 1) is not a strict modular
function. Instead, E2 is only quasimodular, transforming
under modular transformations as

E2

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞ2E2ðτÞ −

6

π
icðcτ þ dÞ: ð3:16Þ

It is the latter “anomaly” term in this result which spoils the
true modular covariance for E2. However, this is precisely
what is needed because the derivative ∂=∂τ in Eq. (3.14)
also fails to be modular invariant in exactly the opposite
way. Thus, it is precisely the combination in Eq. (3.14) that
yields a fully modular-invariant result.
Given these results, we see that our modular-completed

expression for ΔG now takes the form

ΔG ¼ −2
�
τ22

�
Q̄2

H −
1

12
Ē2

��
Q2

G −
ξ

4πτ2

��
: ð3:17Þ

Note that the extra factor of τ22 that has been inserted into
Eq. (3.17) is another element of our modular completion.
This reflects the fact that the insertions of the helicity and
gauge factors—although preserving modular invariance—
also together raise the modular weight of the resulting
integrand in Eq. (2.1) by two units (from k ¼ −1 to
k ¼ þ1) for any four-dimensional string theory. Modular
invariance then dictates that such an increase in the modular
weight of the integrand be accompanied by a corresponding
increase in the number of leading τ2 prefactors. The result
in Eq. (3.17) then completes Step 2 of the procedure
outlined in Sec. II.
At this stage, it may be worthwhile to compare with

the classic results of Kaplunovsky in Ref. [3]. First, we

emphasize that in this paper we are simply calculating the
one-loop contributions to the gauge coupling. In particular,
despite the algebraic resemblance of Eq. (3.2) to a
renormalization-group equation (RGE) for a running gauge
coupling, at this stage we have not introduced any notion
of running or scale. Second, this conceptual difference
notwithstanding, there is a further critical difference in that
the contributions from the massless states were explicitly
removed within the calculation of the ΔG-term in Ref. [3].
This was done because a separate field-theoretic logarith-
mic running (assumed to be contributed from the massless
states) was explicitly introduced into the renormalization-
group version of Eq. (3.2) in Ref. [3]. This rendered ΔG in
Ref. [3] a mere tally of the contributions from only the
massive modes. Thus, in this sense, the version of ΔG in
Ref. [3] became a mere threshold correction, one which is
devoid of its own running.
By contrast, in this paper ΔG will always represent the

full one-loop contribution to the gauge coupling, with the
contributions from both massless and massive states
included together in a unified way. Indeed, it is only in
such a manner that we can ever hope to preserve modular
invariance throughout our calculations. Moreover, once we
proceed to introduce a scale dependence into our eventual
results and consider how these quantities run, we shall even
find that the contributions from the massless string states
are not strictly logarithmic, but instead take a more
complex form which is dictated by modular invariance
and which only reduces to a logarithmic running in a
certain EFT-like limit.
Certain aspects of the modular completions we have

discussed here also appear in Ref. [3] and in the subsequent
work reported in Refs. [10–12]. In particular, our modular
completion of Q2

G is already implicit in Refs. [10–12] and
further discussed/reviewed in Refs. [13,14]. Likewise, the
effective “modular completion” of the helicity factor
whereby the factor of S2 − 1=12 is dropped in favor of
the replacement in Eq. (3.9) already appears in Ref. [3].
However, our subsequent reformulation of this replacement
as a partition-function insertion involving the Eisenstein
function E2—as given in Eqs. (3.14) and (3.15)—is, as far
as we are aware, new and does not appear in the prior
literature.
Given our expression in Eq. (3.17), we can now continue

along the path outlined in Sec. II. In particular, following
Eq. (2.6), we see that our total operator insertion for the
gauge couplings is given by

X ≡ −2τ22

�
Q̄2

H −
1

12
Ē2

��
Q2

G −
ξ

4πτ2

�
: ð3:18Þ

Expanding X in leading powers of τ2 then yields

X ¼ τ2X1 þ τ22X2 ð3:19Þ
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where we now identify

X1 ≡ ξ

2π

�
Q̄2

H −
Ē2

12

�
;

X2 ≡ −2
�
Q̄2

H −
Ē2

12

�
Q2

G: ð3:20Þ

This division of the total insertion into two separate terms
X1 and X2 is based on their leading powers of τ2 and will
be important when we discuss how our expressions diverge
and what kinds of running these quantities ultimately
experience. However, we stress that neither hτ2X1i nor
hτ22X2i is modular invariant by itself. Indeed, these two
terms serve as modular completions of each other, and only
their sum in Eq. (3.19) is modular invariant. Phrased
slightly differently, the splitting of the total insertion into
an X1 piece and an X2 piece based on their leading powers
of τ2 is not unique. This nonuniqueness arises because
modular transformations (especially the Poisson resumma-
tions that often underlie these transformations) can change
the apparent powers of leading τ2 factors that appear. Thus
such resummations have the power to induce a reclassifi-
cation of various terms as belonging to either X1 and X2.
However, once a given separation into X1 and X2 is given,
it will be consistent to perform all calculations within the
framework of that separation without further Poisson
resummations. This issue will be discussed further below.
Our result in Eq. (3.19) tells us that our calculation of the

gauge couplings shares the same basic algebraic structure
as our calculation of the Higgs mass in Ref. [2]. However,
one important difference is the fact that X1;2 now depend
on the worldsheet modular parameters τ1;2 through the
Eisenstein function E2ðτÞ. In other words, we now have
more than simple charge insertions—we also have the
insertion of an entire modular function. We will shortly see
that this difference will have important ramifications.

B. Divergences and regulator function

Our next step is to study the potential divergence
structure of ΔG. Indeed, just as in the Higgs case, it is
possible for ΔG to diverge. For example, any level-matched
massless state which carries a nonzero X2 charge will
induce a divergence in ΔG unless this state is balanced
against another similar state of opposite statistics. Indeed,
in a rough sense to be clarified shortly, the divergence inΔG
will be proportional to Str

M¼0
X2. Likewise, we see that this

divergence is at most logarithmic.
The fact that ΔG formally diverges means that we must

introduce a regulator. It is here that we pass to Step 3 within
Fig. 1. It might seem natural to proceed by simply
subtracting the contributions from the masssless states
(or more precisely the X2-charged massless states) from
ΔG. This is reminiscent of what was done in Ref. [3], but
introducing this sort of artificial distinction between

massless and massive states necessarily breaks the modular
invariance of ΔG.
Instead, following what was done in Ref. [2] for the

Higgs mass, we shall regulate our theory by deforming the
one-loop amplitude as described in Eq. (2.12), introducing
a new regulator function Ĝðτ; τ̄Þ into the integrand:

ΔG → Δ̂G ≡ hτ2X1 þ τ22X2iĜ
¼ hðτ2X1 þ τ22X2ÞĜi: ð3:21Þ

The issue at hand is thus to choose a suitable Ĝ regulator
function.
Below Eq. (2.12) we have listed a number of properties

that such a regulator function should exhibit. A function
satisfying all of these properties was given in Ref. [2],
adapting prior results in Ref. [10], and we shall use this
function here as well. This function Ĝρða; τÞ has two free
regulator parameters ai ≡ fρ; ag with ρ ∈ Rþ and ρ ≠ 1,
and is given by

Ĝρða; τÞ≡ 1

1þ ρa2
ρ

ρ − 1
a2

∂

∂a
½Zcircðρa; τÞ − Zcircða; τÞ�

ð3:22Þ

where

Zcircða; τÞ≡ ffiffiffiffi
τ2

p X
k;l∈Z

q̄ðka−l=aÞ2=4qðkaþl=aÞ2=4: ð3:23Þ

Note that Zcircða; τÞ represents the sum over the Kaluza-
Klein (KK) and winding modes that would be associated
with a bosonic worldsheet field compactified on a circle of
radius ðMsaÞ−1, with k and l respectively indexing the KK
and winding modes, while the leading factor of

ffiffiffiffi
τ2

p
is inserted into Eq. (3.23) in order to ensure that Zcirc is
modular invariant. We stress that for our purposes Zcirc is
merely an ingredient in the definition of our regulator and
does not correspond to any actual physical compactification
of our theory. It turns out that Ĝρða; τÞ → 1 as a → 0,
indicating that taking a → 0 removes the regulator. Indeed,
for this function we have

fðaiÞ ¼ ρa2: ð3:24Þ

It then turns out that all of the numbered requirements below
Eq. (2.12) are satisfied, in addition to the requirement that
Ĝρða; τÞ exhibit an invariance under fðaiÞ → 1=fðaiÞ, or
equivalently under a → ðρaÞ−1. Indeed, we will eventually
identify our spacetime running scale μ according to
Eq. (2.14) with fðaiÞ given in Eq. (3.24).
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C. The Rankin-Selberg transform:
From amplitudes to supertraces

Given this choice of regulator function, our result
for Δ̂G in Eq. (3.21) can then be viewed as representing
Steps 3 and/or 4 in Fig. 1. From this point, there are several
options. One possibility is to proceed directly to Step 6 by
identifying a running mass scale μ according to Eq. (2.14),
where fðaiÞ is given in Eq. (3.24). However, in order to
extract a description of the running of the gauge couplings
which is as close as possible to what we might expect from
ordinary quantum field theory, we are more interested in
performing the Rankin-Selberg transform of our result in
Eq. (3.21) in order to pass to Steps 7 and 8.
Operationally, this transform can be performed in a

number of different ways. In this section, we shall describe
three different approaches to evaluating this transform
in order to understand their relative advantages and dis-
advantages. As we shall see, the first two approaches lead
to results which hold only under certain simplifying
assumptions. Indeed, we describe these approaches because
they connect to our previous calculations in Ref. [2].
Unfortunately, these approaches lack the complete general-
ity that we will ultimately require for some of the later
calculations in this paper. For this reason, after describing
these two approaches, we shall then proceed to outline our
third and preferred approach. As we shall see, this approach
will be completely general and lead to results which have
not been previously described in the literature.
To begin, let us assume that the partition function of our

string theory in D uncompactified spacetime dimensions
takes the form

ZðτÞ≡ τk2
X
m;n

amnq̄mqn ð3:25Þ

where amn is the net (bosonic minus fermionic) number
of string states with right- and left-moving worldsheet
energies ðm; nÞ in the string spectrum and where k≡
1 −D=2. These worldsheet energies are related to the total
spacetime mass M of the corresponding string state via
M2 ¼ 1

2
ðM2

L þM2
RÞ where m ¼ α0M2

R=4 and n ¼ α0M2
L=4.

Let us further assume that we wish to consider the corre-
sponding one-loop amplitude hPl τ

l
2A

ðlÞi where the oper-
ator

P
l τ

l
2A

ðlÞ being inserted gives the value
P

l τ
l
2A

ðlÞ
mn

when acting on a state with worldsheet energies ðm; nÞ. Our
one-loop amplitude is then given by

�X
l

τl2A
ðlÞ
�
≡

Z
F

d2τ
τ22

X
l

τkþl
2

X
m;n

amnA
ðlÞ
mnq̄mqn: ð3:26Þ

For the sake of this discussion we shall assume that this
amplitude is already finite and therefore does not require any
regulation.We shall return to this issue laterwhenwediscuss
what happens when we also insert our regulator.

As long as the amplitude in Eq. (3.26) is finite and
modular invariant, the Rankin-Selberg transform [4–6]
then tells us that this amplitude may equivalently be
expressed as

�X
l

τl2A
ðlÞ
�

¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−22 gðτ2Þ ð3:27Þ

where

gðτ2Þ≡
X
l

τkþl
2

Z
1=2

−1=2
dτ1

X
m;n

amnA
ðlÞ
mnq̄mqn

¼
X
l

τkþl
2

X
n

annA
ðlÞ
nn e−πα

0M2
nτ2 ð3:28Þ

where α0M2
n ¼ 4n. Inserting Eq. (3.28) into Eq. (3.27) and

exchanging the order of the n-sum and the s-integral/
residue (an operation whose validity will be discussed
below), we obtain

�X
l

τl2A
ðlÞ
�

¼ π

3

X
l

X
n

annA
ðlÞ
nn

× Res
s¼1

Z
∞

0

dτ2τ
kþlþs−2
2 e−πα

0M2
nτ2

¼ π

3

X
l

X
n

annA
ðlÞ
nn

× Res
s¼1

½ðπα0M2
nÞ1−k−l−s

× Γðkþ lþ s − 1Þ�: ð3:29Þ

Taking k ¼ −1 (as appropriate for D ¼ 4) and evaluating
the residue of the Euler Γ-function we thus obtain

�X
l

τl2A
ðlÞ
�

¼ π

3

X
l≤1

ð−1Þlþ1

ð1 − lÞ!
×
X
n

annA
ðlÞ
nn ðπα0M2

nÞ1−l; ð3:30Þ

or equivalently

�X
l

τl2A
ðlÞ
�

¼ π

3

X
l≤1

ð−1Þlþ1

ð1 − lÞ! Str½A
ðlÞðπα0M2Þ1−l�

ð3:31Þ

where for this purpose we temporarily identify the super-
trace simply as StrA≡P

n annAnn. We thus see that the
Rankin-Selberg transform procedure has allowed us to
express our original amplitude hPl τ

l
2A

ðlÞi in Eq. (3.26) as
a sum of supertraces over only physical string states (i.e.,
states with m ¼ n).
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As an example of Eq. (3.31), we can consider the
amplitude with no insertions at all. Assuming a tachyon-
free theory (so that the amplitude is finite, as required), we
obtain

h1i ¼ −
1

12
StrM2=M2 ð3:32Þ

where M≡Ms=ð2πÞ ¼ ð2π ffiffiffiffi
α0

p Þ−1. We thus find [8]

Λ≡ −
M4

2
h1i ¼ 1

24
M2 StrM2; ð3:33Þ

as already noted in Eq. (2.3).
Interestingly, we see that our final expression in

Eq. (3.31) receives no apparent contributions from off-
shell states (i.e., states with m ≠ n). Likewise, our final
result receives no contributions from AðlÞ insertions with
l ≥ 2. Because of these features, it might initially seem that
the value of the amplitude hPl τ

l
2A

ðlÞi is independent of
these states and insertions. However, this is not correct: our
result in Eq. (3.31) holds only under the assumption that
this amplitude is modular-invariant, and modular invariance
certainly requires these off-shell states and the occasional
inclusion of AðlÞ insertions with l ≥ 2, as we have seen
above. Rather, what we are learning from Eq. (3.31) that
modular invariance is so powerful a symmetry that the
contributions from the off-shell states and AðlÞ insertions
with l ≥ 2 are already implicitly determined by—and thus
can be written in terms of—the contributions from the on-
shell and l ≤ 1 insertions.
Finally, before proceeding further, we note that our

derivation of the result in Eq. (3.31) rests on a number
of algebraic manipulations which have important qualifi-
cations and implications. One of these assumptions is
relevant for Eq. (3.29), in which it was assumed that all
Mn are positive in passing to the second line. However, if
massless states are present, one can always imagine
deforming our theory to give these states very small
nonzero masses. One can then perform the integration in
Eq. (3.29) rigorously and remove these masses at the end.
As discussed in Sec. IV of Ref. [2], this procedure is valid
as long as such massless states do not cause the amplitude
under study to diverge. Indeed, we see from the final result
in Eq. (3.31) that it is difficult for massless states to make
contributions in any case unless l ¼ 1.
However, a more important assumption was made in

passing from Eq. (3.28) to Eq. (3.29), where we exchanged
the order of the n-summation and s-integration/residue
extraction. This exchange is valid only if the n-summation
over the spectrum does not itself introduce any new
divergences. In general, this will indeed be the case.
However, there can be limits of our theories in which
the spectrum becomes so dense as to be effectively
continuous. In such cases, this procedure breaks down,

additional divergences can emerge from the sums over
states, and there can be nonzero contributions from the
operator insertions AðlÞ with l > 1. However, it is easy to
understand what is happening in such situations: the theory
is becoming effectively higher-dimensional. As a result,
in such cases we could equivalently shift to a higher-
dimensional description from the start. The value of k
would then drop below −1, with a corresponding change in
the values of l for which Eq. (3.31) would receive explicit
contributions. Indeed, in a limit in which our four-dimen-
sional theory becomes effectively six-dimensional, we have
k ¼ 1 −D=2 → −2. Following the same derivation as
above, we then find that the range of the l-summation
in Eq. (3.31) becomes l ≤ 2, and we now have explicit
contributions from Að2Þ. This phenomenon can also be
understood in terms of the discussion in the paragraph
below Eq. (3.20). As we decompactify our theory and the
string spectrum becomes dense, it becomes appropriate to
perform a Poisson resummation over the corresponding
Kaluza-Klein states (momentum modes). This Poisson
resummation introduces extra powers of τ2 and thus
effectively reshuffles certain terms between X1 and X2.
Fortunately, it is possible to reformulate the Rankin-

Selberg transform procedure in such a way as to avoid
exchanging the order of the n-sum and the s-integral/
residue after reaching Eq. (3.28). This then produces a
more general result which holds even when the string
spectra become dense. Indeed, rather than integrate over
τ2 and then take the residue at s ¼ 1 as in Eq. (3.29), we
can instead proceed by recognizing from Eq. (3.27) that
the original string amplitude hPl τ

l
2A

ðlÞi is nothing but
the Mellin transform of gðτ2Þ=τ2. We can therefore write
gðτ2Þ directly as the inverse Mellin transform of this
amplitude, thereby ultimately leading to the alternative
result [15,16]

�X
l

τl2A
ðlÞ
�

¼ π

3
lim
τ2→0

gðτ2Þ; ð3:34Þ

where gðτ2Þ continues to be given by Eq. (3.28). This
result is equivalent to Eq. (3.27), but has the primary
advantage that we can now evaluate hPl τ

l
2A

ðlÞi simply
by taking the τ2 → 0 limit of gðτ2Þ rather than by
evaluating the residue of the τ2 integral of gðτ2Þ, as in
Eq. (3.29). Indeed, inserting Eq. (3.28) into Eq. (3.34), we
find

�X
l

τl2A
ðlÞ
�

¼ π

3
lim
τ2→0

X
l

τkþl
2

X
n

annA
ðlÞ
nn e−πα

0M2
nτ2 :

ð3:35Þ

The issue then boils down to how we evaluate the
right side of Eq. (3.35). Since we are taking the τ2 → 0
limit, one natural possibility would be to Taylor-expand
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the exponential. Taking k ¼ −1 (as appropriate for a four-
dimensional theory) and recognizing that terms with
r > 1 − l vanish in the τ2 → 0 limit, we would then obtain

�X
l

τl2A
ðlÞ
�

¼ π

3
lim
τ2→0

X
l

X1−l
r¼0

τlþr−1
2

ð−1Þr
r!

X
n

annA
ðlÞ
nn ðπα0M2

nÞr

¼ π

3
lim
τ2→0

X
l≤1

X1−l
r¼0

τlþr−1
2

ð−1Þr
r!

Str½AðlÞðπα0M2Þr� ð3:36Þ

where the supertrace continues to be defined as below
Eq. (3.31) and where in passing to the final line we have
recognized that the conditions on the r-sum have imposed
an upper limit on the l-sum. However, for theories in which
the original string amplitude hPl τ

l
2A

ðlÞi is finite, we know
that the right side of Eq. (3.36) cannot diverge as τ2 → 0.
We thus obtain a set of auxiliary conditions which must
hold in all such theories, namely

Str ½AðlÞðπα0M2Þr� ¼ 0 ð3:37Þ

for all 0 ≤ r ≤ −l with l ≤ 1. As long as these auxiliary
conditions are satisfied, we then have

�X
l

τl2A
ðlÞ
�

¼ π

3

X
l≤1

ð−1Þ1−l
ð1 − lÞ! Str½A

ðlÞðπα0M2Þ1−l�;

ð3:38Þ

thereby exactly matching the result we obtained in
Eq. (3.31). We thus see that the Mellin-transformed result
has not only reproduced the result in Eq. (3.31), but has
also furnished the explicit extra conditions in Eq. (3.37)
which must be satisfied in order for this result to be valid.
Indeed, these auxiliary conditions may be viewed as
the conditions under which the exchange of the order
of n-summation and s-integration/residue extraction are
valid. For example, in the case of the vacuum amplitude
h1i, these auxiliary conditions reduce to the condition
Str 1 ¼ 0. This condition, which we have already men-
tioned in Eq. (2.5), is quite remarkable, indicating that even
when spacetime supersymmetry is broken in a given string
model, the residual misaligned supersymmetry continues to
ensure that this supertrace vanishes—even though such
theories do not permit any possible pairing of bosonic and
fermionic states.
The results in Eqs. (3.37) and (3.38) hold for the vast

majority of string theories as long as we are avoiding the
edges of moduli space corresponding to decompactification
limits. Indeed, we continue to issue this proviso because we
have still made a further critical algebraic assumption in
this analysis. This occurred when we evaluated the right

side of Eq. (3.35) by Taylor-expanding the exponential
and then passing the r-summation past the n-summation.
While this may be a valid step in many string theories, in
this paper we shall need to consider cases in which the
insertions AðlÞ have eigenvalues ðm; nÞ-eigenvalues which
are growing functions of m and n, thereby rendering our
sums over states badly divergent. In such cases, the
exponential suppression is critical for a finite result and
it is therefore not possible to Taylor-expand this exponen-
tial and consider the different terms in the Taylor expansion
separately.
As we have explained above, the fundamental difficulty

is that the different l-terms which contribute to gðτ2Þ have
different apparent powers of τ2, but in reality these powers
of τ2 can be exchanged between these different l-terms as
the result of algebraic manipulations (such as Poisson
resummations) that become appropriate in certain limiting
regions of moduli space. For this reason, we should
really consider gðτ2Þ as a single object with its own overall
τ2-dependence without attempting to draw a correspon-
dence between this overall τ2-dependence and the different
l-terms within gðτ2Þ.
We can accomplish this by following the approach

originally taken in Ref. [8]. This approach has also been
generalized in Ref. [17], and in the remainder of this
subsection we shall quickly derive the important results
from Refs. [8,17] that we shall require in the rest of this
paper. In particular, returning to Eq. (3.35), we can begin by
isolating our sum over states with all modular-invariant
operator insertions included, i.e.,

Sðτ2Þ≡
X
l

τl2
X
n

annA
ðlÞ
nn e−πα

0M2
nτ2 : ð3:39Þ

However, let us now assume that S has an overall τ2-
dependence as τ2 → 0 given by

Sðτ2Þ ∼
X
j

Cjτ
j
2 ð3:40Þ

where the coefficients Cj are completely arbitrary. Note
that our assumption that this sum is finite as τ2 → 0 allows
us to assume that j ≥ 0. Indeed, this sum is finite because
we have assumed that our theory is free of physical
tachyons; because the degeneracies grow no more rapidly
than jannj ∼ e

ffiffi
n

p
according to the Hagedorn phenomenon;

and because the charge-operator eigenvalues AðlÞ
nn typically

grow no faster than a polynomial in n. By contrast, the
exponential suppression goes as e−n since α0M2

n ∼ n. In this
context, we remark that we are not imposing the condition
that Cj ≠ 0 only for integer values of j. There indeed exist
examples for which noninteger values of j contribute
within the sum in Eq. (3.40). However, we shall be
concerned with the lowest-lying values of j, and for these
we can take j ∈ Z.
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Once we assume a τ2-dependence of the form in
Eq. (3.40), we can take the τ2-derivative of both sides of
Eq. (3.40) to obtain

d
dτ2

	X
l

τl2
X
n

annA
ðlÞ
nn e−πα

0M2
nτ2




¼
X
n

ann
d
dτ2

	X
l

τl2A
ðlÞ
nn



e−πα

0M2
nτ2

þ
X
l

τl2
X
n

annA
ðlÞ
nn ðπα0M2

nÞe−πα0M2
nτ2

¼set d
dτ2

�X
j

Cjτ
j
2

�
¼

X
j

ðjþ 1ÞCjþ1τ
j
2: ð3:41Þ

Indeed, these relations hold for τ2 ≪ 1. Taking the τ2 → 0
limits of Eqs. (3.40) and (3.41) then yields explicit
expressions for the leading coefficients [8,17]

C0 ¼ lim
τ2→0

	X
l

τl2
X
n

annA
ðlÞ
nn e−πα

0M2
nτ2




C1 ¼ lim
τ2→0

�X
n

ann
d
dτ2

	X
l

τl2A
ðlÞ
nn



e−πα

0M2
nτ2

�

− lim
τ2→0

	X
l

τl2
X
n

annA
ðlÞ
nn ðπα0M2

nÞe−πα0M2
nτ2



: ð3:42Þ

Likewise, the coefficients Cj with j ≥ 2 can be calculated
in a similar fashion by taking additional τ2-derivatives (and
will ultimately be useful only for theories in spacetime
dimensions D > 4).
Substituting Eq. (3.40) into Eq. (3.35) and taking k ¼ −1

as appropriate for four-dimensional string theories then
yields
�X

l

τl2A
ðlÞ
�
¼ π

3
lim
τ2→0

τk2
X∞
j¼0

Cjτ
j
2

¼ π

3
C1

¼ π

3
lim
τ2→0

�X
n

ann
d
dτ2

	X
l

τl2A
ðlÞ
nn



e−πα

0M2
nτ2

�

−
π

3
lim
τ2→0

	X
l

τl2
X
n

annA
ðlÞ
nn ðπα0M2

nÞe−πα0M2
nτ2



: ð3:43Þ

Critically, we now see that all of our expressions are
properly convergent as a result of the exponential damping
factors. Indeed, motivated by comparison with our earlier
results, we define the regulated supertrace [8]

StrA≡ lim
τ2→0

X
n

annAnne−πα
0M2

nτ2 : ð3:44Þ

Indeed, this is nothing but the supertrace we introduced in
Eq. (2.4), with y now identified as πτ2. Moreover, we now

see that Eq. (3.44) serves as the correct formal definition of
the supertrace previously defined below Eq. (3.31).
Written in terms of these supertraces we thus have our

general result that expresses our full one-loop string
amplitude in terms of supertraces over physical string
states:

�X
l

τl2A
ðlÞ
�

¼ π

3
Str

	
d
dτ2

�X
l

τl2A
ðlÞ
�


−
π

3
Str

	�X
l

τl2A
ðlÞ
�
ðπα0M2Þ



: ð3:45Þ

Equivalently, for any modular-invariant operator insertion
X in four dimensions, we have [17]

hXi ¼ π

3
Str

�
d
dτ2

X
�
−
π

3
Str½Xðπα0M2Þ�

¼ π

3
StrðDτ2XÞ ð3:46Þ

where

Dτ2 ≡
d
dτ2

− πα0M2

¼ d
dτ2

−
1

4πM2
M2: ð3:47Þ

For modular-invariant insertions X that are τ2-independent
(so that we can write X ¼ X where X is itself modular
invariant), this result simplifies to

hXi ¼ −
1

12M2
StrðXM2Þ: ð3:48Þ

Likewise, for operator insertions of the form X ¼ τ2X1þ
τ22X2, we have

hτ2X1þ τ22X2i¼
π

3
StrðX1þ2τ2X2Þ

−
1

12M2
Str½ðτ2X1þ τ22X2ÞM2�: ð3:49Þ

Moreover, under our assumption that the string amplitude is
finite, we learn from the first line of Eq. (3.43) that we must
have C0 ¼ 0 as an auxiliary condition. Given the coef-
ficients in Eq. (3.42), this then yields [17]

StrX ¼ 0: ð3:50Þ

This auxiliary condition thus accompanies our result in
Eq. (3.46) or its simplifications in Eqs. (3.48) or (3.49).
Before proceeding further, it is worth emphasizing

that the quantity in Eq. (3.44) is properly viewed as a
regulated supertrace only if the inserted operator A is itself
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τ2-independent. In such cases, the τ2-dependent exponen-
tial factor in Eq (3.44) functions as a true regulator, with τ2
functioning as a dummy regulator variable whose regulat-
ing effects are ultimately removed by taking the τ2 → 0
limit. By contrast, in cases in which our inserted operator A
has its own τ2-dependence, we are no longer free to view τ2
as an independent regulator variable; rather, the quantity
whose limit must be taken in Eq. (3.44) becomes inextri-
cably identified with the τ2 that appears within A, so that
the τ2 → 0 limit not only removes the damping exponential
but also deforms the operator A. However, in either case,
the operational prescription is clear: we insert our full
operator A within Eq. (3.44), along with any τ2-dependent
factors which may appear, and then evaluate the sum and
limit accordingly.
The results in Eqs. (3.48) and (3.50) were originally

derived in Ref. [8] for the case X ¼ X ¼ 1, but we now see
[17] that they hold for all modular-invariant τ2-independent
insertionsX that lead to finite string amplitudes. Moreover,
we now also see that the result in Eq. (3.48) is actually only
a special case of the more general result in Eq. (3.46).
Indeed, as we have stressed above, our formulation of
the Rankin-Selberg transform in Eq. (3.46) is completely
general and holds for any operator insertion X ≡P

l τ
l
2A

ðlÞ regardless of the values of l involved, so long
as the regulated supertrace in Eq. (3.44) is used and the
inserted operator X does not disturb the modular invariance
of the amplitude integrand or the finiteness of the resulting
amplitude.
Thus far, we have shown that our desired amplitude

hτ2X1 þ τ22X2i is given in Eq. (3.49). However, there is an
alternate way in which we might have evaluated this
amplitude [17]. Given the sum S in Eq. (3.39), we
immediately recognize that

gðτ2Þ ¼ τ−12 Sðτ2Þ: ð3:51Þ

We therefore directly have

�X
l

τl2A
ðlÞ
�

¼ π

3
lim
τ2→0

τ−12 Sðτ2Þ

¼ π

3
lim
τ2→0

	X
l

τl−12

X
n

annA
ðlÞ
nn e−πα

0M2
nτ2




¼ π

3
Str

�X
l

τl−12 AðlÞ
�
: ð3:52Þ

Indeed, for any modular-invariant operator insertion X , this
becomes [17]

hXi ¼ π

3
Strðτ−12 XÞ: ð3:53Þ

Comparing this with our result in Eq. (3.46), we thus obtain
the remarkable identity [17]

Strðτ−12 XÞ ¼ StrðDτ2XÞ ð3:54Þ

where the derivativeDτ2 is given in Eq. (3.47). This identity
applies to any modular-invariant operator insertion X in
four dimensions.
Note that this identity does not imply that τ−12 X and

Dτ2X are equal. Rather, it implies that both of these
quantities have the same supertrace when this supertrace
is evaluated over the entire string spectrum. For τ2-
independent insertionsX ¼ X this identity takes the simple
form [17]

Strðτ−12 XÞ ¼ −
1

4πM2
StrðXM2Þ: ð3:55Þ

Moreover, for the special case in which X ¼ X ¼ 1, we
find

Strðτ−12 Þ ¼ −
1

4πM2
StrM2: ð3:56Þ

In conjunction with Eq. (2.3), this then provides an
alternate supertrace expression for the cosmological con-
stant Λ in Eq. (2.2), specifically

Λ ¼ −
π

6
M4 Strðτ−12 Þ: ð3:57Þ

Finally, for X ¼ τ2X1 þ τ22X2, the identity in Eq. (3.54)
takes the form

Strðτ2X2Þ ¼
1

4πM2
Str½ðτ2X1 þ τ22X2ÞM2�: ð3:58Þ

This then allows us to express the amplitude in Eq. (3.49) in
the simpler form

hτ2X1 þ τ22X2i ¼
π

3
StrðX1 þ τ2X2Þ; ð3:59Þ

in agreement with Eq. (3.53).
The identity in Eq. (3.54) is rather astonishing, leading to

results such as those in Eqs. (3.55), (3.56), and (3.58) in
which a change in the power of τ2 within a supertrace can
be traded for the insertion of an additional factor of the
squared mass. Moreover, within this context, the condition
in Eq. (3.50) helps us to interpret results such as those in
Eq. (3.55). Recall that the definition of the supertrace in
Eq. (3.44) involves taking the τ2 → 0 limit. Thus, when we
insert a factor of τ−12 into a supertrace—such as on the left
side of Eq. (3.55)—or when we equivalently insert a factor
of M2 into the supertrace—such as on the right side of
Eq. (3.55)—it would a priori seem that we are pushing this
supertrace towards a divergence, especially since our
supertrace involves summing over an infinite tower of
states with ever-increasing masses. However, these rela-
tions come with the additional constraint in Eq. (3.50)
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which tells us that the supertrace without these factors of
τ−12 or M2 actually vanishes. These extra factors thus “lift”
the value of this supertrace away from zero and thereby
allow it to have the nonzero result which matches the value
of the corresponding amplitude.
Because of its central importance, it is critical that we

understand the implications of Eq. (3.50). As we have
shown, this relation holds regardless of whetherX contains
leading τ2 factors. If X does not contain any explicit
leading τ2 factors of its own (e.g., X ¼ X ¼ 1), then this
constraint is at its most powerful, requiring that

X
n

annXnne−πα
0M2

nτ2 → 0 as τ2 → 0: ð3:60Þ

More precisely, in four uncompactified dimensions, we
have from Eq. (3.43) that

����
X
n

annXnne−πα
0M2

nτ2

����≲ τ2 as τ2 → 0: ð3:61Þ

However, even if X has leading τ2 factors, the constraint in
Eq. (3.50) has teeth. As an example, let us suppose that X
has a leading power τl2 with some value l > 0, so that we
can write X ¼ τl2X. In such cases the constraints in
Eqs. (3.50) and (3.61) tell us that

����
X
n

annXnne−πα
0M2

nτ2

����≲ τ1−l2 as τ2 → 0: ð3:62Þ

This constraint continues to provide a significant bound
on the spectral sum on the left side of this equation: as
τ2 → 0, we find that this spectral sum can grow no more
rapidly than a power of 1=τ2, with the power given by
l − 1. This constraint is obviously strongest for small
values of l, but nevertheless rules out all exponential
growth as τ2 → 0. This is a significant exclusion, since
exponential growth would be the naïve expectation in
string theory given that the numbers of bosonic and
fermionic states in string theory generically grow expo-
nentially with mass.
To illustrate this phenomenon numerically, let us

examine a spectrum with alternating, exponentially
growing boson/fermion surpluses, as predicted by mis-
aligned supersymmetry, where the growth rates scale as
∼e

ffiffi
n

p
(as required by conformal invariance and the

Hagedorn transition). For numerical simplicity, we
shall model ann (the net number of bosons minus the
number of fermions at a given level n) as having the
functional form

ann ¼ ð−1Þne ffiffi
n

p ð3:63Þ

where n schematically represents the string level and
thus can be associated with the eigenvalue of the

corresponding mass α0M2 or charge Q2. Here the factor
ð−1Þn indicates that the even levels are presumed to have
surpluses of bosons relative to fermions while the odd
levels have surpluses of fermions relative to bosons. Of
course, such a functional form cannot correspond to any
actual modular-invariant string theory—for example, the
ann values in this little exercise are not even integers—and
far more sophisticated functional forms of this general
type emerge in actual string models [1,8,9]. However, this
simple functional form does capture the essential conse-
quence of misaligned supersymmetry, namely that we
have alternating bosonic and fermionic surpluses for
which no boson/fermion pairings are possible anywhere
in the infinite string spectrum, with the degeneracies ann
lying along equal but opposite bosonic and fermionic
“envelope functions” ∼e

ffiffi
n

p
[1,8,9]. We shall also imagine

that our insertion X has eigenvalues Xnn ∼ nβ for some
exponent β, and consider the spectral sums

fβðτ2Þ≡
X∞
n¼0

annnβe−nτ2 : ð3:64Þ

For example, the different values of β might correspond to
different powers of mass/charge insertions, with an
insertion of nβ corresponding to an insertion of 2β powers
of mass M or charge Q. Indeed, in such cases the fully
modular-invariant insertion would also include an overall
factor τβ2, and thus the different values of β correspond to
different values of l in Eq. (3.62).
In general, we know that for all β > 0 we must have

fβðτ2Þ → 0 as τ2 → ∞, since in this limit only the con-
tributions from the massless (n ¼ 0) states survive, and
these vanish for all β > 0. However, as we dial τ2 to smaller
values, there will be less and less suppression of the
contributions from the heavier states. Our functions
fβðτ2Þ therefore become increasingly sensitive to the
exponentially growing oscillations that exist throughout
the massive levels with n > 0. Thus, as τ2 → 0, we expect
that fβðτ2Þwill diverge exponentially while simultaneously
experiencing rapid oscillations which prevent the extraction
of any smooth τ2 → 0 limit.
In Fig. 2 we plot fβðτ2Þ as a function of τ2 for 0 ≤ β ≤ 6.

(Such plots are similar in spirit to those in Ref. [18].) As
expected, we see that fβðτ2Þ → 0 as τ2 → ∞ for all β > 0,
as discussed above. However, as τ2 becomes smaller, we
find that for each β our function jfβðτ2Þj does not diverge
exponentially as τ2 → 0, but instead remains within the
bounds indicated in Eq. (3.62). Indeed, this happens even
without the ability to realize any boson/fermion pairings
within the associated spectrum. Moreover, for the simple
functional form in Eq. (3.63), we even find that fβðτ2Þ
approaches a finite value as τ2 → 0. Thus, we see that the
spectrum in Eq. (3.63) already does a good job of satisfying
our supertrace constraints, and even has a τ2 → 0 limit
which comes close to vanishing in the β ¼ 0 case.

ABEL, DIENES, and NUTRICATI PHYS. REV. D 107, 126019 (2023)

126019-18



Once again, we stress that the simple spectrum in
Eq. (3.63) is only a caricature of an actual fully modu-
lar-invariant string spectrum. This exercise nevertheless
illustrates how even the constraint in Eq. (3.62) has teeth.
As a final remark, we note that not every oscillating

functional form for ann will exhibit this behavior. Indeed,
the functional form in Eq. (3.63) is particularly “stringy”:
rather than relying on boson/fermion pairings at any mass
level, the controlled behavior as τ2 → 0 occurs as the result
of tight constraints that involve the numbers of states across
the entire (infinite) string spectrum. From this perspective
the critical aspect of the spectrum in Eq. (3.63) is that the
bosonic and fermionic states share the same exponentially
growing degeneracy profile function e

ffiffi
n

p
while never-

theless sampling this function at “misaligned” values (in
this case, with even n for bosons and odd n for bosons).
This is the underpinning of misaligned supersymmetry, as
discussed in Ref. [9].
To see that this is the critical feature, let us imagine a

more “field-theoretic” spectrum in which the bosonic states
continue to have degeneracies ann ∼ e

ffiffi
n

p
but in which their

fermionic would-be superpartners have these same degen-
eracies but with masses lifted by some small supersym-
metry-breaking scale δn:

fðBÞβ ðτ2Þ≡
X
n

anne−nτ2

fðFÞβ ðτ2Þ≡
X
n

anne−ðnþδnÞτ2 : ð3:65Þ

Here the two distributions in Eq. (3.65) indicate bosonic
and fermionic states respectively. Of course, this is a very

natural spectrum from a field-theoretic perspective, exhib-
iting a clear boson/fermion pairing. However, such cases
lack modular invariance, and indeed we find that the

corresponding fβðτ2Þ≡ fðBÞβ ðτ2Þ − fðFÞβ ðτ2Þ functions not
only grow exponentially as τ2 → 0, thereby violating the
constraints in Eq. (3.62), but also exhibit increasingly
violent oscillations that preclude numerical extraction of
any smooth limiting values as τ2 → 0. Similar problematic
results arise for other paired bosonic/fermionic splitting
patterns as well.
Thus, to summarize the results of this section, we find

that any four-dimensional string amplitude hXi with a
modular-invariant insertion X can be written as [17]

hXi ¼ π

3
StrðDτ2XÞ ¼ π

3
Strðτ−12 XÞ ð3:66Þ

where Dτ2 is defined in Eq. (3.47). In conjunction with
Eq. (3.66), we also have the constraint in Eq. (3.50) which
tightly constrains the spectrum of states and renders the
quantities in Eq. (3.66) finite. Given the discussion above,
we see that supertrace expressions such as these are
meaningful and convergent precisely because we are work-
ing within a string-theoretic context wherein the corre-
sponding spectra are governed by modular invariance and
misaligned supersymmetry, even though bosonic/fermionic
pairings are no longer possible. Indeed, it is in this way that
string theory maintains its finiteness—even without space-
time supersymmetry, and even in the face of not only
exponentially growing towers of states but also exponen-
tially growing net (bosonic minus fermionic) numbers of
states [1,8,9].

D. Entwined amplitudes and entwined supertraces

In the previous subsection we derived the general results
in Eqs. (3.46) and (3.50) for the Rankin-Selberg transform.
At first glance, our next task would then appear to be to
apply these results for the specific operator insertions that
arise in our calculation of the gauge couplings. In particu-
lar, as evident from Eq. (3.20), there are four specific
operator insertions that will be required in our gauge-
coupling calculation:

Q̄2
H; Q̄2

HQ
2
G; Ē2; and Ē2Q2

G: ð3:67Þ

The first and third of these come from the insertion of X1,
while the second and fourth come from the insertion of X2.
Unfortunately, we cannot yet apply the Rankin-Selberg

formalism to all of these operator insertions. The insertions
Q̄2

H and Q̄2
HQ

2
G behave as assumed above for AðlÞ,

depositing their corresponding ðm; nÞ eigenvalues AðlÞ
mn

within the partition-function trace as in Eq. (3.26). The
same is also true of the factorQ2

G within the fourth operator
in Eq. (3.67). However the “operator” Ē2 is actually a

FIG. 2. The infinite sums fβðτ2Þ in Eq. (3.64), plotted as
functions of τ2 for 0 ≤ β ≤ 6. The β ¼ 0 curve is the upper blue
curve which asymptotes to 1 as τ2 → ∞, while the β ¼ 1; 2;…; 6
curves all asymptote to 0 as τ2 → ∞ and can be identified
according to the increasing values that they have at any fixed
large value of τ2 (with n ¼ 1 orange, n ¼ 2 green, n ¼ 3 red,
etc.). As τ2 drops to zero from a large value, we see that our
functions fβðτ2Þ do not diverge (as would have been expected as
we slowly remove the τ2 cutoff), but instead remain within the
bounds indicated in Eq. (3.62), leading to finite values for fβðτ2Þ
as τ2 → 0.
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function of the complex parameter τ and thus has its
own double power-series expansion in ðq; q̄Þ. Moreover,
because we are to insert the same Ē2 function for each state
within the string spectrum, insertion of this Ē2 function into
any partition-function trace yields nothing but a product of
the original partition-function trace and the Ē2 function. As
a result, if ZX denotes the partition-function trace with an
operator X inserted (i.e., if ZX ∼

P
m;n amnXmnq̄mqn), then

ZĒ2
¼ Z · Ē2 and ZXĒ2

¼ ZX · Ē2. The integrand of the
(unregulated) amplitude for our gauge-coupling calculation
thus generally takes the form

ZAþBĒ2
¼ ZA þ ZB · Ē2 ð3:68Þ

where A ¼ P
l τ

l
2A

ðlÞ and B ¼ P
l τ

l
2B

ðlÞ. Here AðlÞ and
BðlÞ are the analogs of X1 and X2. Indeed, from Eq. (3.20)
we have

Að1Þ ¼ ξ

2π
Q̄2

H; Að2Þ ¼ −2Q̄2
HQ

2
G;

Bð1Þ ¼ −
ξ

24π
; Bð2Þ ¼ 1

6
Q2

G: ð3:69Þ

Note that Bð1Þ is just a constant. Given the form in
Eq. (3.68), we thus expect the results of our calculations
to involve not only the supertraces emerging from ZA, as
discussed in the previous subsection, but also the super-
traces emerging from the product ZBĒ2 in Eq. (3.68).
Unfortunately, as we shall now see, this product structure
renders the extraction of the corresponding supertraces
more complicated than before.
To see the implications of this product structure, let us

begin by considering a completely general product of the
form Z1 · Z2, where the factors Zi are arbitrary modular-
invariant functions which each have their own ðq; q̄Þ
power-series expansions of the forms

Z1 ∼
X
m;n

bmnq̄mqn;

Z2 ∼
X
r;s

crsq̄rqs: ð3:70Þ

In order to apply the Rankin-Selberg procedure as in the
previous subsection, we must first recast the product of
these two power-series expansions into the form of a single
power-series expansion, as in Eq. (3.26). We then wish to
consider the corresponding g-function, as in Eq. (3.28).
Given Eq. (3.70), we immediately see that

Z1 · Z2 ∼
X
m;n

X
r;s

bm;ncr;sq̄mþrqnþs: ð3:71Þ

It then follows that

gZ1·Z2
∼
X
p

dppðq̄qÞp ð3:72Þ

where the “on-shell” degeneracies dpp associated with the
product are given by the discrete convolution

dpp ≡
X
m;n

bmncp−m;p−n: ð3:73Þ

This truncation to a single summation in Eq. (3.72)
occurs because the τ1-integration within the definition of
gZ1·Z2

ðτ2Þ selects only those terms in Eq. (3.71) for which
mþ r ¼ nþ s ¼ p. Thus the new “degeneracies” dpp
within gZ1·Z2

depend on the degeneracies of both the
level-matched and nonlevel-matched states within the
original Z1 and Z2 factors. In other words, the two factors
Z1 and Z2 are now entwined within the product Z1 · Z2.
Nevertheless, as is evident upon comparing Eq. (3.28) and
(3.72), the quantities fdppg now play the same role for a
product of two modular functions as previously played by
the degeneracies fannAnng in the case of a single modular
function.
If Z2 is purely antiholomorphic, we can set s ¼ 0 above.

We then find that p ¼ n, whereupon

dpp ≡
Xrmax

r¼0

bp−r;pcr0: ð3:74Þ

In general, right-moving worldsheet energies in string
theory are bounded from below by the right-moving
worldsheet vacuum energy Δ. For example, we have Δ ¼
−1 for the bosonic string and Δ ¼ −1=2 for the superstring
and heterotic string. In all cases, we must therefore have
p − r ≥ Δ. For any value of p, as in Eq. (3.74), this
therefore imposes an upper bound

rmax ≡ bp − Δc ð3:75Þ

where bxc denotes the greatest integer ≤ x.
For the special case with Z2 ¼ Ē2, we find cr0 ¼ χr in

Eq. (3.74), where χr is defined in Eq. (3.13). This then
yields

dpp ¼ bpp − 24
Xrmax

r¼1

σðrÞbp−r;p

¼
Xrmax

r¼0

χrbp−r;p: ð3:76Þ

We thus see that we obtain the expected result dpp ¼ bpp
(for r ¼ 0) along with a “correction” term (for r ≥ 1) which
reflects the entwining of the theories and which is induced
by the modular completion.
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There is interesting physics in this entwinement. For the
lowest-lying levels with p ¼ 0, p ¼ 1, and so forth, we
have

d00 ¼ b00

d11 ¼ b11 − 24σð1Þb01
d22 ¼ b22 − 24σð1Þb12 − 24σð2Þb02
d33 ¼ b33 − 24σð1Þb23 − 24σð2Þb13 − 24σð3Þb03: ð3:77Þ

Of course, if Z1 represents the string partition function itself
without any insertions, we then have bmn ¼ amn where amn
tallies the number of bosonic minus fermionic string states
with worldsheet energies ðm; nÞ, as in Eq. (3.25).
Otherwise, if Z1 represents the string partition function
with an insertion whose ðm; nÞ eigenvalues are given by
Amn, then bmn ¼ amnAmn. In either case, we see from
Eq. (3.77) that off-shell (nonlevel-matched) purely stringy
states are entering into the entwinement. Moreover, we
should also remember that these are not the only states in
the theory. For example, for p ¼ 1=2, p ¼ 3=2, etc., we
also have

d1
2
;1
2
¼ b1

2
;1
2
− 24σð1Þb−1

2
;1
2

d3
2
;3
2
¼ b3

2
;3
2
− 24σð1Þb1

2
;3
2
− 24σð2Þb−1

2
;3
2
: ð3:78Þ

Thus even off-shell states with right-moving tachyonic
mass contributions (i.e., with α0M2

R < 0) are now entering
into the entwinement, even though our theory is presumed
to lack physical on-shell tachyons. (Indeed, if this had been
the holomorphic E2-function rather than the antiholomor-
phic Ē2-function, even the proto-graviton [19] would have
entered into the entwinement.) Of course, this analysis
pertains to heterotic strings. For Type II theories, by
contrast, the proto-graviton states will enter the entwine-
ment even for Ē2, given that the Type II string has a
holomorphic/antiholomorphic (or worldsheet left-moving/
right-moving) symmetry.
We also note that in all cases we must always have

p ≥ 0. This restriction arises for two reasons: because our
original theory is presumed tachyon-free (with bpp ¼ 0 for
all p < 0), and because dpp with p < 0 cannot emerge via
entwinement (i.e., from some state bp−r;p with r ≥ 1)
because right-moving worldsheet energies in string theory
are never smaller than −1, even for the bosonic string. The
values of p within the p-sum are otherwise unconstrained,
and depend on the spectrum of string modes, Kaluza-Klein
modes, and winding modes of the particular string
under study.
Given this understanding of the nature of the entwine-

ment induced by the presence of the Ē2 factor, we can now
proceed to derive the general Rankin-Selberg transforma-
tion of the amplitude whose integrand is given in
Eq. (3.68). Following from Eq. (3.34), we have

hAþ BĒ2i ¼
π

3
lim
τ2→0

gAþBĒ2
ðτ2Þ ð3:79Þ

where

gAþBĒ2
ðτ2Þ ¼ gAðτ2Þ þ gBĒ2

ðτ2Þ: ð3:80Þ

As before, the first contribution is given by

gAðτ2Þ ¼
X
l

τl−12

X
p

appA
ðlÞ
ppe−4πpτ2 ð3:81Þ

where in the exponential we identify p with αM2=4, as
usual, with M denoting the total mass of the given string
state within the p-sum. By contrast, for the second
contribution in Eq. (3.80), we see from Eqs. (3.72) and
(3.74) that

gBĒ2
ðτ2Þ ¼

X
l

τl−12

	X
p

Xrmax

r¼0

χrap−r;pB
ðlÞ
p−r;p



e−4πpτ2

ð3:82Þ

where χr is given in Eq. (3.13) and where the quantity in
square brackets is nothing but dpp in Eq. (3.72). Indeed, the
double ðp; rÞ-sum in Eq. (3.82) is essentially a sum over all
of the string states with right- and left-moving worldsheet
energies ðm; nÞ with m ≤ n, even those with m ≠ n. Of
course, all string states have m − n ∈ Z as a result of the
invariance of the string partition function under τ → τ þ 1.
The expression in Eq. (3.82) is properly convergent: the

r-summation has only a finite range 0 ≤ r ≤ rmax for any
fixed value of p, while the subsequent p-sum—although
infinite—is kept convergent by the p-suppressed exponen-
tial. However, it is possible to rearrange the terms of this
double ðp; rÞ sum in a manner which continues to include
all ðm; nÞ string states with m ≤ n but which renders this
convergence more explicit and is closer to the fundamental
string symmetries.
To see this, let us imagine the different ðm; nÞ≡ ðp −

r; pÞ string states as populating a matrix, with m≡ p − r
and n≡ p indicating the corresponding row and column,
respectively. Such an arrangement is illustrated in Fig. 3.
Indeed, we see that for any fixed p there is a maximum
corresponding value of r, as already noted in Eq. (3.75).
The ðp; rÞ double sum as written in Eq. (3.82) then
corresponds to tallying our states vertical column by
vertical column within the upper triangular m ≤ n portion
of the matrix (i.e., the portion on or above the diagonal).
However, as is evident from Fig. 3, there is another way in
which we might sum these states. First, we can sum the
states which lie along the diagonal (which we will now call
the principal diagonal)—these are the physical string
states, all of which have r ¼ 0. Next, we can sum the
states along the “first shifted diagonal” which is one
column/row displaced (or shifted) from the principal
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diagonal. These entries tally the contributions from the
unphysical string states whose left- and right-moving
worldsheet energies differ by one unit, i.e., states with
r ¼ 1. Next, we can sum over the “second shifted diagonal”
which is two units removed from the principal diagonal,
and so forth. In this way, we can equivalently reach all of
our ðm; nÞ states with m ≤ n and m − n ∈ Z. However,
organizing our states according to the diagonals on which
they lie is tantamount to organizing our states according to
their L0 − L̄0 eigenvalues, where L0 is the zero-mode
Virasoro operator. Indeed, this method of summing along
diagonals is even suggested by the p and r variables
themselves, since r essentially specifies the diagonal on
which a given state lies while p then indicates the location
along this diagonal.
Performing our summation along successive diagonals

rather than column-by-column is tantamount to replacing

X∞
p

Xrmax

r¼0

⟶
X∞
r¼0

X∞
p

ð3:83Þ

within Eq. (3.82), where as always the p-sum is an infinite
one which includes all of the values relevant for the
particular string model in question. These values include
not only integers [for states such as those in Eq. (3.77)] but
also half-integers [for states such as those in Eq. (3.78)],

etc. Of course, while the p-sum on the left side of Eq. (3.83)
nominally begins at p ¼ 0, the p-sum on the right side of
Eq. (3.83) begins at higher values of p so that p − r ≥ Δ.
Implementing Eq. (3.83) within Eq. (3.82) is thus equiv-
alent to reshuffling the contributions from the different
terms within Eqs. (3.77) and (3.78) so that we sum along
the vertical columns (rather than horizontal rows) within
these equations. We therefore obtain

gBĒ2
ðτ2Þ¼

X
l

τl−12

X∞
r¼0

X
p

χrap−r;pB
ðlÞ
p−r;pe−4πpτ2 : ð3:84Þ

Our next step is to understand the exponential suppres-
sion factor e−4πpτ2 that appears in Eq. (3.84). In Eq. (3.81),
a similar exponential factor appeared, and we identified p
in the exponential with the total squared mass α0M2=4 of
the corresponding string state, whereM2 ≡ ðM2

L þM2
RÞ=2.

However, this identification is no longer appropriate for
Eq. (3.84). Because of the entwinement that appears in
Eq. (3.74), we see that our exponential factor ðq̄qÞp
actually represents the product

ðq̄qÞp ¼ ðq̄p−rqpÞ · q̄r ð3:85Þ

where only the parenthesized first factor encapsulates the
mass contributions from the states in the original theory. By
contrast, the second factor emerges purely from the
entwinement function. Indeed, for r ≠ 0 this is precisely
why our results are sensitive to the off-shell string states.
However, this means that our identification of p and r
with the masses of our underlying string states must now
take the form

α0M2
R ¼ 4ðp − rÞ; α0M2

L ¼ 4p; ð3:86Þ

implying that r ¼ α0ðM2
L −M2

RÞ=4≡ α0ðΔM2Þ=4. This is
consistent with our identification of r as indicating how far
from the principal diagonal a given state lies. However, we
now see directly from Eq. (3.86) that p represents only the
left-moving contribution α0M2

L=4 to the total mass of the
state. Thus our exponential suppression factor is given
by e−πα

0M2
Lτ2.

This result may seem strange, especially given that
the exponential damping factor within the g-function has
the level-matched form ðq̄qÞp, as it must. However, in the
present circumstance we identify

ðq̄qÞp ¼ ðq̄p−rqpÞ · q̄r
¼ ðq̄α0M2

R=4qα
0M2

L=4Þq̄r
¼ e−2πτ2ð12α0M2þrÞe2πiτ1½14α0ðM2

L−M
2
RÞ−r�: ð3:87Þ

Moreover, we know that r ¼ α0ðM2
L −M2

RÞ=4. Inserting
this result for r then eliminates the second exponential in

FIG. 3. String states arranged as a matrix according to their
right-moving (vertical) and left-moving (horizontal) worldsheet
energies ðm; nÞ≡ ðp − r; pÞ, respectively. The states with r ¼ 0
lie along the principal diagonal, while the states with r ¼ 1; 2;…
lie along successive shifted diagonals. The requirement r ≥ 0
selects only those string states along or above the principal
diagonal, and the τ → τ þ 1 invariance of the partition function
ensures that only those “squares” shaded in green with m − n ∈
Z can be populated. The pink square is necessarily empty in any
tachyon-free theory, and the row shaded in orange is excluded for
heterotic strings because such strings have right-moving world-
sheet energies ≥ −1=2. In drawing this figure we have assumed
that states populate only integer or half-integer mass levels, but in
general the spectrum of states can be far denser and may even
approach a continuum in ðm; nÞ [or equivalently in p] for
exceedingly large or small compactification radii.
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Eq. (3.87)—as it must, given that gðτ2Þ cannot have any
residual τ1-dependence—and the first exponential becomes

e−2πτ2ðα0M2þrÞ ¼ e−2πτ2½14α0ðM2
LþM2

RÞþ1
4
α0ðM2

L−M
2
RÞ�

¼ e−πα
0M2

Lτ2 ; ð3:88Þ

thereby reproducing the same exponential suppression as
given above.
Thus, putting the pieces together, we find that the E-

entwined portion of our g-function takes the form

gBĒ2
ðτ2Þ ¼

X
l

τl−12

X∞
r¼0

X
p

χrap−r;pB
ðlÞ
p−r;pe−πα

0M2
Lτ2 ;

ð3:89Þ

whereupon we have

hAþ BĒ2i ¼
π

3
lim
τ2→0

τ−12

	X
l

τl2
X
p

appA
ðlÞ
ppe−πα

0M2τ2

þ
X
l

τl2
X∞
r¼0

X
p

χrap−r;pB
ðlÞ
p−r;pe−πα

0M2
Lτ2



:

ð3:90Þ

The rest of our analysis proceeds precisely as for the case
without entwinement. Following Eq. (3.40), we can assume
that the total quantity within square brackets in Eq. (3.90)
has an overall τ2-dependence of the form

P∞
j¼0 Cjτ

j
2. We

then have

C0 ¼ lim
τ2→0

½…�;

C1 ¼ lim
τ2→0

d
dτ2

½…� ð3:91Þ

where ½…� represents the quantity in square brackets in
Eq. (3.90). The presumed finiteness of hAþ BĒ2i then
leads us to conclude that

C0 ¼ 0;

hAþ BĒ2i ¼
π

3
C1: ð3:92Þ

Just as in the case without entwinement, these results can
be given a direct interpretation in terms of supertraces over
our string states. We have already remarked that our
unentwined supertrace in Eq. (3.44) is nothing but an
operator eigenvalue-weighted sum over the states that lie
along the principal diagonal. Given this, let us also define
an analogous shifted supertrace as the sum over the states
that lie along the rth shifted diagonal:

StrðrÞ X ≡ lim
τ2→0

X
p

ap−r;pXp−r;pe−πα
0M2

Lτ2 ð3:93Þ

where α0M2
L ¼ 4p and where the p-sum, as always, is over

all of the states in the spectrum of the string model under
consideration. Note that for r ¼ 0, level-matching implies
that ML ¼ MR ¼ M. We thus find that the r ¼ 0 shifted
supertrace is nothing but our ordinary supertrace:

Strðr¼0Þ X ¼ StrX: ð3:94Þ

The shifted supertraces with r > 0 may thus be considered
to be the generalizations of the ordinary supertrace to off-
shell states—i.e., states that lie along nonprincipal diago-
nals. As noted above, the p-sums along nonprincipal
diagonals typically begin with nonzero values of p, so
that p − r continues to exceed the right-moving vacuum
energy Δ of the string model under consideration (with
Δ ¼ −1=2 for the heterotic string). However, this restric-
tion merely characterizes the existing states in the theory.
No states are excluded by these observations, and indeed
these sums continue to tally all of the (off-shell) states that
exist in the theory.
We can also define an E-entwined supertrace StrE as the

χr-weighted sum of all of these shifted supertraces:

StrE X ≡X∞
r¼0

χr StrðrÞ X: ð3:95Þ

As such, this entwined supertrace StrE X not only tallies
both the physical and the unphysical string states but also
organizes the latter naturally according to how nonlevel
matched they are. In this way the E-entwined supertraces
elegantly capture the string-theoretic nature of our full
string spectrum, where the Ē2 function determines the χr
coefficients and thereby determines the precise nature of
the entwinement (motivating us to refer to this as an E2-
entwinement, or E-entwinement for short).
The definition in Eq. (3.95) has an important simplifi-

cation if our supertrace is restricted to only those states with
ML ¼ 0. Such states have p ¼ 0, but for heterotic strings
this in turn implies that we can only have r ¼ 0, since any
greater value of rwould result in a right-moving worldsheet
energy L̄0 less than −1=2. We therefore have

StrE
ML¼0

X ¼ χ0 Str
M¼0

ð0Þ X ¼ Str
M¼0

X ð3:96Þ

where the first equality is a consequence of the restriction
to r ¼ 0 while the second equality is a consequence of
Eq. (3.94) in conjunction with the fact that χ0 ¼ 1. Indeed,
the quantity in Eq. (3.96) is nothing but a00X00.
Our results in Eqs. (3.91) and (3.92) can be easily

expressed in terms of these shifted and entwined super-
traces. In particular, we see that
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C0 ¼ StrAþ StrE B;

C1 ¼ Str

�
dA
dτ2

�
− Str½Aðπα0M2Þ�

þ StrE

�
dB
dτ2

�
− StrE½Bðπα0M2

LÞ�

¼ Str½Dτ2A� þ StrE½DðLÞ
τ2 B� ð3:97Þ

where, in analogy to Eq. (3.47), we have

DðLÞ
τ2 ≡ d

dτ2
− πα0M2

L: ð3:98Þ

Our Rankin-Selberg relations for the entwined case then
become

StrA ¼ −StrE B

hAþ BĒ2i ¼
π

3
fStr½Dτ2A� þ StrE½DðLÞ

τ2 B�g: ð3:99Þ

In cases for which the operator insertions A and B are
τ2-independent, this last result reduces to

hAþBĒ2i¼−
1

12M2
½StrðAM2ÞþStrEðBM2

LÞ�: ð3:100Þ

We also note that the results in Eq. (3.99) reduce to those in
Eqs. (3.50) and (3.46) for the case in which the entwine-
ment is removed, i.e., the case in which Ē2 → 0, or χr → 0
for all r ≥ 0.
We have already seen in Eq. (2.5) that Str 1 ¼ 0 in any

closed-string theory which is free of physical (on-shell)
tachyons. Indeed, this is a completely general result which
was first obtained in Ref. [8] and which holds even if the
string model in question lacks spacetime supersymmetry.
Indeed, this result is one of the fundamental predictions of
misaligned supersymmetry [8,9], a hidden symmetry which
must always exist in any string spectrum and which plays a
critical role in ensuring the finiteness of closed-string
amplitudes. Given this result, it is natural to wonder
whether the corresponding entwined supertrace StrE 1
vanishes as well. From Eq. (3.95) we see that this would
require either that the shifted supertraces StrðrÞ 1 each
vanish individually or take values which cancel in the
sum over r in Eq. (3.95). However, just as Str 1 vanishes
when evaluated along the principal diagonal for any self-
consistent tachyon-free closed string theory, it can be
shown [20] that StrðrÞ 1 ¼ 0 as well—i.e., that this super-
trace also necessarily vanishes along each of the shifted
diagonals. This result is ultimately the result of an off-shell
misaligned supersymmetry that exists within the off-shell
structure of any tachyon-free string theory [9,20]. We thus
find the general result

StrðrÞ 1 ¼ 0 for all r

⇒ StrE 1 ¼ 0: ð3:101Þ

Given these results, it is now straightforward to evaluate
the supertraces of the overall operator insertionsX1 and X2

in Eq. (3.20). We thus obtain the relations

StrX1 ¼
ξ

2π
Str Q̄2

H;

StrX2 ¼ −2Str Q̄2
HQ

2
G þ 1

6
StrE Q2

G ð3:102Þ

where StrE is defined as in Eq. (3.95) in terms of principal
and shifted supertraces and where we have eliminated a
term proportional to StrE 1 that would otherwise have
appeared in the first line of Eq. (3.102). Indeed, with these
results we have succeeded in writing the supertraces of our
operator insertionsX1 andX2 in terms of the supertraces of
our physical charges Q̄2

H and Q2
G across the states in the

string spectrum.
We see, then, that the entwinement has had a profound

effect on our theory, leading to supertraces over more than
merely the physical string states. At first glance, this might
seem to violate our claim—as expressed in Sec. II—that the
Rankin-Selberg procedure leads to supertraces over only
the physical string states. However, the Rankin-Selberg
procedure always involves performing the τ1-integral when
defining gðτ2Þ, and thus it always projects onto those
overall q̄mqn contributions for which m ¼ n. By contrast,
what has occurred is that the presence of the Ē2 insertion—
which has its own intrinsic τ̄-dependence—has effectively
deformed how the different ðm; nÞ states ultimately con-
tribute within the relevant modular integrands, ultimately
allowing off-shell states within the original theory to
become “physical” (i.e., level-matched) within the
modular-completed calculation of the gauge couplings.
This then allows such states to contribute in the large-τ2
limit (i.e., in the deep IR), just as we expect for physical
states. Thus, in this sense, it is the modular completion—
along with the appearance of the Ē2 factor—which has
deformed the notion of “physicality” insofar as the Rankin-
Selberg procedure is concerned, allowing string states which
were originally nonlevelmatched to behave as physical states
in our gauge-coupling calculation. Entwinement thereby
widens the class of states which can ultimately contribute
to the supertraces when calculating string amplitudes.

E. Generic picture of running gauge
couplings in string theory

Having assembled all of the relevant conceptual ingre-
dients, we are now ready to tackle our main task: to utilize
the Rankin-Selberg procedure in order to evaluate the string
amplitude that yields the regulated one-loop contribution to
the gauge coupling, and to recast this amplitude in terms of
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spectral supertraces. As we have seen in Eqs. (3.21) and
(3.68), this amplitude is given by

Δ̂G ¼ hðτ2X1 þ τ22X2ÞĜi
¼ hðAþ BĒ2ÞĜi
¼ h½ðτ2Að1Þ þ τ22A

ð2ÞÞ
þ ðτ2Bð1Þ þ τ22B

ð2ÞÞĒ2�Ĝi ð3:103Þ

where theXl are given in Eq. (3.20), whereA, B,AðlÞ, and
BðlÞ are given in Eq. (3.69), and where the regulator
function Ĝρða; τÞ is given in Eq. (3.22).
The first thing we notice from the last term on the final

line of Eq. (3.103) is that we are now dealing not with a
mere entwinement between two modular functions ZBðτ; τ̄Þ
and Ē2ðτ̄Þ, but rather a triple entwinement between
ZBðτ; τ̄Þ, Ē2ðτ̄Þ, and our regulator function Ĝρða; τ; τ̄Þ.
Thus, in principle, we should first develop a formalism
for handling such a triple entwinement. Moreover, as we
have discussed in Sec. III B, we would like to evaluate this
amplitude as a function of a, since ρa2 will eventually be
identified with our running scale μ in units ofMs. However,
the value of a affects the nature of the triple entwinement in
a highly nontrivial way.
For these reasons, we shall adopt a different approach.

In particular, we shall follow the methodology first
established in Appendix A of Ref. [2] for calculations of
the Higgs mass, only suitably adapted for our gauge-
coupling calculation. To do this, we observe upon compar-
ing Eqs. (2.6) and (3.103) that the one-loop Higgs mass has
the same algebraic structure as the one-loop contribution to
the gauge coupling. Indeed, the only difference between the
two expressions is a change in the particular operator
insertions Xl. However, the calculation in Appendix A
of Ref. [2] does not rely on the precise operator insertions
as long as they have the general modular structure
τ2X1 þ τ22X2. For this reason, we can borrow the results
from Appendix A of Ref. [2] and then simply update these
results using the new operator insertions appropriate for our
gauge-coupling calculation.
This procedure is greatly facilitated by first observing

that the form of the regulator function Ĝρða; τÞ in Eq. (3.22)
allows us to reduce the calculation of Δ̂G to a calculation of
the “reduced” amplitude

PðaÞ ¼ hðτ2X1 þ τ22X2ÞZcircða; τÞi ð3:104Þ

where Zcircða; τÞ is the circle-compactification function in
Eq. (3.23). Indeed, once we have evaluated PðaÞ, it follows
from Eq. (3.22) that we can then easily evaluate Δ̂G through
the relation

Δ̂Gðρ; aÞ ¼
a2

1þ ρa2
ρ

ρ − 1

∂

∂a
½PðρaÞ − PðaÞ�: ð3:105Þ

Our task is therefore to evaluate PðaÞ. However, this is
precisely what is done in Ref. [2] for cases in which the
operators Xl do not contain any entwinements. Indeed, in
such cases it is shown that PðaÞ is given by

PðaÞ ¼ Str
M¼0

X1½f1ðaÞ þ f2ðaÞ�
þ Str

M¼0
X2½f3ðaÞ�

þ Str
M>0

X1½f2ðaÞ þ f4ðM; aÞ�
þ Str

M>0
X2½f5ðM; aÞ� ð3:106Þ

where

f1ðaÞ ¼
πa
3
;

f2ðaÞ ¼
π

3a
;

f3ðaÞ ¼ −
2

a
; log a

f4ðM; aÞ ¼ 2

π

X∞
r¼1

�
M
rM

�
K1

�
rM
aM

�
;

f5ðM; aÞ ¼ 4

a

X∞
r¼1

K0

�
rM
aM

�
: ð3:107Þ

Here M ¼ Ms=ð2πÞ is the reduced string scale and
KνðzÞ denotes the modified Bessel function of the second
kind. Likewise, the notations Str

M¼0
XfðMÞ and Str

M>0
XfðMÞ

respectively indicate contributions from purely massless
and massive string states. The result in Eq. (3.106) is exact
for all a and holds for general unentwined modular-
invariant operator insertions of the form X ¼ τ2X1þ
τ22X2. Thus we see from Eq. (3.106) that our reduced
amplitude in Eq. (3.104) for unentwined operators X1 and
X2 can ultimately be expressed in terms of combinations of
supertraces of the form Str½XfðMÞ� for various combina-
tions of X1 and X2 and for various functions fðMÞ. We
further note that the functions f1 through f3 are wholly
independent of any aspect of the spectrum of the string
theory under study, and thus these functions can be taken
outside their respective supertraces. By contrast, the func-
tions f4 and f5 depend not only on the regulator parameter
a but also on the mass M of the contributing state. Such
functions are thus intrinsically part of the supertrace and
cannot be factored out.
Although the result in Eq. (3.106) was derived for

operators Xl that do not involve any entwining, it is not
difficult to generalize this result to the case in which a given
operatorX is entwined, i.e., takes the formX ¼ Aþ B · Ē2
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with B ≠ 0. Indeed, tracing through the derivations that
originally led to Eq. (3.106), we find that in such cases we
can simply replace

Str½XfðMÞ�
→ Str½AfðMÞ� þ StrE½BfðMLÞ� ð3:108Þ

within Eq. (3.106). This illustrates the power of the
entwined-supertrace formalism we have developed.
Moreover, when restricting to massive states [i.e., states
whose contributions to gðτ2Þ have an exponential τ2-
dependent suppression], we have

Str
M>0

½XfðMÞ�
→ Str

M>0
½AfðMÞ� þ StrE

ML>0
½BfðMLÞ�: ð3:109Þ

The critical point here is that the restriction to massive
states for X becomes a restriction to states with positive
left-moving mass ML for the E-entwined supertrace. This
makes sense since the exponential suppression within gðτ2Þ
for the entwined supertrace depends onM2

L rather thanM2.
By contrast, when restricting to massless states [i.e., states
that contribute to gðτ2Þ without exponential suppression],
the fðMÞ function becomes a constant which can be pulled
outside the trace. We can then push this one step further and
write

Str
M¼0

X → Str
M¼0

Aþ StrE
ML¼0

B

¼ Str
M¼0

Aþ Str
M¼0

B: ð3:110Þ

The top line is of course analogous to what occurs in
Eq. (3.109), but the additional step—the passage to the
second line—follows from Eq. (3.96).
As an example of Eq. (3.110), let us consider the cases

when X ¼ X1 and X ¼ X2. In these cases we have

Str
M¼0

X1 ¼
ξ

2π
Str
M¼0

Q̄2
H −

ξ

24π
StrE
ML¼0

1

¼ ξ

2π
Str
M¼0

�
Q̄2

H −
1

12

�
ð3:111Þ

and

Str
M¼0

X2 ¼ −2 Str
M¼0

Q̄2
HQ

2
G þ 1

6
StrE
ML¼0

Q2
G

¼ −2 Str
M¼0

�
Q̄2

H −
1

12

�
Q2

G: ð3:112Þ

Interestingly, we see that in both cases the restriction to
massless states has completely eliminated the modular
completion that we originally performed in Eq. (3.15).

We further note the identity

StrE
ML>0

1 ¼ StrE 1 − StrE
ML¼0

1

¼ − Str
M¼0

1 ¼ Str
M>0

1: ð3:113Þ

Here the first equality follows from the observation
originally made in the paragraph below that containing
Eq. (3.78), namely that p ≥ 0 (implying that ML ≥ 0).
Likewise, the second equality follows from Eq. (3.101) and
the final equality follows from Eq. (2.5).
Let us now start with Eq. (3.106) and insert our

expressions for X1 and X2, where these expressions are
given in Eq. (3.20). Bearing in mind the substitutions and
simplifications in Eqs. (3.108) through (3.113), we obtain

PðaÞ ¼ Str
M¼0

�
ξ

2π

�
Q̄2

H −
1

12

�
½f1ðaÞ þ f2ðaÞ�

�

− Str
M¼0

	
2

�
Q̄2

H −
1

12

�
Q2

Gf3ðaÞ



þ Str
M>0

	
ξ

2π

�
Q̄2

H −
1

12

�
f2ðaÞ




þ Str
M>0

	
ξ

2π
Q̄2

Hf4ðM; aÞ



− StrE
ML>0

	
ξ

24π
f4ðML; aÞ




− Str
M>0

½2Q̄2
HQ

2
Gf5ðM; aÞ�

þ StrE
ML>0

	
1

6
Q2

Gf5ðML; aÞ


: ð3:114Þ

This expression represents the line-by-line result of sub-
stituting the values of theXi fromEq. (3.20) into Eq. (3.106)
and implementing the identities in Eqs. (3.108)
through (3.113).
Additional manipulations can further simplify this

expression and render it more compact while also simul-
taneously elucidating its algebraic structure. This rewrit-
ing will also be useful for understanding certain properties
of the resulting running of the gauge couplings. In
particular, we note that the final f2ðaÞ term on the first
line of Eq. (3.114) can be joined with the third line of this
equation in order to remove the M > 0 restriction on the
latter. The removal of this restriction then further allows us
to eliminate the −1=12 term as a result of the identity
Str 1 ¼ 0. Likewise, the f1ðaÞ term on the first line can be
combined with the expressions on the fourth and fifth
lines in order to remove their M > 0 and ML > 0
restrictions as well; indeed, these latter observations
follow as a result of the fact that K1ðzÞ ∼ z−1 as z → 0,
whereupon we see that
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lim
M→0

X∞
r¼1

�
M
rM

�
K1

�
rM
aM

�
¼

X∞
r¼1

a
r2

¼ π2a
6

; ð3:115Þ

or equivalently

lim
M→0

f4ðM; aÞ ¼ f1ðaÞ: ð3:116Þ

Interpreting the quantity in Eq. (3.116) as f4ð0; aÞ, we
thus find that Eq. (3.114) simplifies to

PðaÞ ¼ −Str
M¼0

	
2

�
Q̄2

H −
1

12

�
Q2

Gf3ðaÞ



þ Str

	
ξ

2π
Q̄2

Hf2ðaÞ



þ Str

	
ξ

2π
Q̄2

Hf4ðM; aÞ



− StrE

	
ξ

24π
f4ðML; aÞ




− Str
M>0

½2Q̄2
HQ

2
Gf5ðM; aÞ�

þ StrE
ML>0

	
1

6
Q2

Gf5ðML; aÞ


: ð3:117Þ

At first glance it might seem that the first line of
Eq. (3.117) could be rewritten in an analogous manner
as theM → 0 limit of the terms in the final two lines. This
would require that f3ðaÞ somehow emerge as the M → 0
limit of f5ðM; aÞ. However, this is ultimately not the case:
we instead find that

f5ðM; aÞ ∼ f3ðaÞ þ
Ms

M
þ 2

a
log

�
eγ

M
2Ms

�
as M → 0:

ð3:118Þ

While the extra a-independent constant Ms=M would
ultimately prove irrelevant under the operation in
Eq. (3.105), the logarithmic divergence in Eq. (3.118)
spoils the uniform convergence of the Bessel-function
sum. This issue has important implications and is dis-
cussed in detail in Sec. V of Ref. [2].
There is also a third way of rewriting these expressions

which can be useful for understanding the ramifications of
the entwinement in these theories. From Eqs. (3.95), (3.94),
and (3.13) we can write

StrE X ¼ StrX þ
X∞
r¼1

χrStrðrÞ X: ð3:119Þ

However, as we discussed below Eq. (3.94), we must have
p − r ≥ Δ where Δ is the right-moving vacuum energy
within the type of string theory under study. We thus find
that p ≥ Δþ r, which implies that we cannot have r ≥ 1

unless p ≥ Δþ 1. This last constraint is evident in Fig. 3
for the heterotic case in which Δ ¼ −1=2. From Eq. (3.86)
this last constraint corresponds to α0M2

L ≥ 4ðΔþ 1Þ. We
can thus write

StrE X ¼ Str
M<ME

X þ StrE
ML≥ME

X ð3:120Þ

where ME denotes the entwinement scale

ME ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Δþ 1

p
Ms ð3:121Þ

at which the entwinement first appears. For heterotic strings
we have ME ¼ ffiffiffi

2
p

Ms. Note that Eq. (3.120) is a general
result, valid for all strings. Despite theM < ME upper limit
on the first of the sums in Eq. (3.120), this sum can
nevertheless involve a large number of states; this is
especially true for cases in which compactification radii
are far from the string scale.
Using Eq. (3.120), we can finally rewrite Eq. (3.117) in

the form

PðaÞ ¼ − Str
M¼0

	
2

�
Q̄2

H −
1

12

�
Q2

Gf3ðaÞ



þ Str

	
ξ

2π
Q̄2

Hf2ðaÞ



þ Str
M<ME

	
ξ

2π

�
Q̄2

H −
1

12

�
f4ðM; aÞ




þ Str
M≥ME

	
ξ

2π
Q̄2

Hf4ðM; aÞ



− StrE
ML≥ME

	
ξ

24π
f4ðML; aÞ




− Str
0<M<ME

	
2

�
Q̄2

H −
1

12

�
Q2

Gf5ðM; aÞ



− Str
M≥ME

½2Q̄2
HQ

2
Gf5ðM; aÞ�

þ StrE
ML≥ME

	
1

6
Q2

Gf5ðML; aÞ


: ð3:122Þ

Although this expression has more individual terms
than its two predecessors, it explicitly shows that the
entwinement is wholly restricted to string states with
ML ≥ ME. Indeed, all terms that receive contributions
from states with masses M < ME depend not on Q̄2

H but
rather on the explicit unentwined combination Q̄2

H − 1=12.
This statement includes the contribution on the second line
of Eq. (3.122) once we realize that the 1=12 term that would
otherwise appear there has vanished as a result of the
identity Str 1 ¼ 0.
Equations (3.106), (3.114), (3.117), and (3.122) re-

present fully modular-invariant evaluations of the reduced
string amplitude PðaÞ in Eq. (3.104), expressed purely in
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terms of supertraces over our string states. Given that these
supertraces are to be evaluated over the states within the
spectrum of whatever the string model happens to be, these
results are completely general and model agnostic, appli-
cable to any four-dimensional string model—with or
without spacetime supersymmetry—so long as the model
lacks physical tachyons. Although the modular invariance
of PðaÞ in each of these expressions is not manifest, it is
hidden in supertrace identities that relate the various terms
in these expressions to each other.
Using these expressions in conjunction with Eq. (3.105)

we can then trivially evaluate our full desired amplitude
Δ̂GðμÞ for the running of the gauge couplings. Indeed, we
see from Eq. (3.105) that we can turn PðaÞ into Δ̂GðμÞ
simply by replacing each term within PðaÞ according to the
schematic substitution Str½XfiðaÞ� → Str½XϕiðμÞ� where
the operatorsX are unchanged and where the new functions
ϕiðμÞ for each fiðaÞ are given by

ϕiðμÞ≡ 1

1þ ρa2
ρ

ρ − 1
a2

∂

∂a
½fiðρaÞ − fiðaÞ� ð3:123Þ

where we first evaluate the right side of Eq. (3.123) as a
function of ρ and a, and then identify μ2 ≡ ρa2M2

s with
ρ ¼ 2 chosen as a benchmark value. Indeed, given the fi-
functions in Eq. (3.107), we find

ϕ1ðμÞ ¼
π

3

μ2=M2
s

1þ μ2=M2
s
;

ϕ2ðμÞ ¼
π

3

1

1þ μ2=M2
s
;

ϕ3ðμÞ ¼
2

1þ μ2=M2
s
log

�
2

ffiffiffi
2

p
eMs

μ

�
;

ϕ4ðM; μÞ ¼ 1

1þ μ2=M2
s

1

π

�
M
M

�
2

½Kð0;1Þ
0 ðzÞ þKð0;1Þ

2 ðzÞ�;

ϕ5ðM; μÞ ¼ 2

1þ μ2=M2
s
½Kð1;2Þ

1 ðzÞ − 2Kð0;1Þ
0 ðzÞ�; ð3:124Þ

where z≡ 2
ffiffiffi
2

p
πM=μ and where we have defined the

Bessel-function combinations [2]

Kðn;pÞ
ν ðzÞ≡X∞

r¼1

ðrzÞn½Kνðrz=ρÞ − ρpKνðrzÞ�: ð3:125Þ

Note that ϕ1ðμÞ þ ϕ2ðμÞ ¼ π=3.
These ϕi-functions are extremely important and have

direct physical interpretations. While the specific charges
that enter into the Xi expressions tell us which specific
quantity is under study (such as the Higgs mass versus the
gauge coupling), and while the particular numerical values
of these charges tell us about the particular string model
under study, the ϕi functions are essentially universal and
tell us how these phenomenological quantities run as

functions of the scale μ in the corresponding EFT. As
we have seen, these running functions are universal for all
quantities (such as the one-loop Higgs mass or gauge
couplings) which have at most a logarithmic divergence in
string theory prior to regularization. More specifically,
substituting PðaÞ → Δ̂ðμÞ and fiðaÞ → ϕiðμÞ within our
previous expression for PðaÞ in Eq. (3.114), we find that

(i) ϕ1ðμÞ is the contribution to Δ̂GðμÞ per unit
(Að1Þ þ Bð1Þ) charge from each massless physi-
cal state;

(ii) ϕ2ðμÞ is the additional contribution to Δ̂GðμÞ per
unit (Að1Þ þ Bð1Þ) charge from each physical state,
regardless of mass;

(iii) ϕ3ðμÞ is the additional contribution to Δ̂GðμÞ per
unit (Að2Þ þ Bð2Þ) charge from each massless physi-
cal state;

(iv) ϕ4ðM; μÞ is the additional contribution to Δ̂GðμÞ per
unit Að1Þ charge for each physical state of nonzero
massM, while ϕ4ðML; μÞ is χ−1r times the additional
contribution to Δ̂GðμÞ per unit Bð1Þ charge for
each physical or unphysical string ðm; nÞ state with
left-moving mass ML for which n −m≡ r with
r ≥ 0; and

(v) ϕ5ðM; μÞ is the additional contribution to Δ̂GðμÞ per
unit Að2Þ charge for each physical state of nonzero
massM, while ϕ5ðML; μÞ is χ−1r times the additional
contribution to Δ̂GðμÞ per unit Bð2Þ charge for each
physical or unphysical string ðm; nÞ state with left-
moving mass ML for which n −m≡ r with r ≥ 0.

Here the AðiÞ and BðiÞ charges are given in Eq. (3.69), and
the above results are quoted for bosonic states; fermionic
states of course contribute with opposite signs. Once again,
we stress that these results are completely general for all
phenomenological quantities which diverge at most loga-
rithmically when unregulated; it is only when we substitute
the particular forms of AðiÞ and BðiÞ in Eq. (3.69) that we
limit our attention to Δ̂GðμÞ of the gauge couplings. Indeed,
in the case of the Higgs mass in Ref. [2], no entwinement
occurs and we have Bð1Þ ¼ Bð2Þ ¼ 0.
As we have seen, the results quoted above for PðaÞ in

Eqs. (3.114), (3.117), and (3.122) come directly from the
result in Eq. (3.106). This in turn is taken directly from
Eq. (A15) of Ref. [2]. Although the derivation given in
Ref. [2] is sufficient for the Higgs mass, it makes the
implicit assumption that supertraces of the general form
Str½τ2X2fðMÞ� are all vanishing as a result of the explicit
factor of τ2 within the supertrace. Otherwise, such terms
would also have appeared in Eq. (3.106). At first glance, the
absence of such terms from all calculations might appear to
be justified, given that our supertraces are defined in
Eq. (3.44) in terms of a limiting procedure that involves
taking the τ2 → 0 limit. Indeed, in most circumstances
(including those considered in Ref. [2], where the Higgs
mass was calculated), the extra factor of τ2 inside the
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supertrace would drive the overall supertrace to vanish, as
assumed. However, as discussed earlier, it is possible
(especially near the borders of moduli space) that our
spectrum of string states can become extremely dense. In
such cases, the accumulated “pile-up” of states can cause
quantities such as StrX2fðMÞ to diverge, thereby allowing
supertraces such as Str½τ2X2fðMÞ� to have nonzero values.
This “pile-up” phenomenon will be discussed in more
detail in Ref. [21].
In the present calculation of gauge couplings, we would

like to maintain complete generality and allow our results to
remain valid even as we approach the boundaries of moduli
space. For this reason, we must amend our results for PðaÞ
quoted above. However, it turns out that this is relatively
straightforward and amounts to introducing only one
additional contribution

Str
M>0

τ2X2½f2ðaÞ� ð3:126Þ

within Eq. (3.106). This extra term will then propagate into
Eqs. (3.114), (3.117), and (3.122). In fact, given that the
“pile-up” phenomenon that gives rise to this term involves
the infinite towers of massive states, we note that
Str
M¼0

τ2X2½f2ðaÞ� ¼ 0. The contribution in Eq. (3.126)

can thus be equivalently written as

Str τ2X2½f2ðaÞ�; ð3:127Þ

with no restriction on the masses of the states in the
supertrace.
At this stage, we have now completed Step 8, as outlined

in Sec. II. This enables us to extract a considerable amount
of information about the running of Δ̂GðμÞ. For example, let
us consider the behavior of Δ̂GðμÞ in the deep-IR limit, i.e.,
as μ → 0. As μ → 0, we find that ϕ1ðμÞ, ϕ4ðμÞ, and ϕ5ðμÞ
all vanish; in the latter two cases this happens because the
Bessel functions K2ðzÞ in Eq. (3.124) all vanish exponen-
tially as z → ∞. Thus, only ϕ2ðμÞ and ϕ3ðμÞ survive in the
deep-IR limit. Of course, ϕ3ðμÞ actually diverges in this
limit. This divergence is not a surprise, however, since the
deep-IR limit corresponds to the limit a → 0 in which our
regulator is removed. Thus this divergence corresponds to
the logarithmic divergence of our original unregulated
quantity. As anticipated in Sec. III B, and as apparent from
each of our above expressions for PðaÞ, this divergence is
proportional to

Str
M¼0

ðAð2Þ þ Bð2ÞÞ ¼ −2 Str
M¼0

�
Q̄2

H −
1

12

�
Q2

G: ð3:128Þ

However, in theories for which this quantity vanishes, we
find that only ϕ2ðμÞ survives, with limμ→0 ϕ2ðμÞ ¼ π=3. In
such cases we find from Eqs. (3.114) and (3.127) that

lim
μ→0

Δ̂GðμÞ ¼
π

3
StrðX1 þ τ2X2Þ

¼ ξ

6
Str Q̄2

H −
2π

3

�
Str τ2Q̄2

HQ
2
G −

1

12
StrE τ2Q2

G

�
:

ð3:129Þ

The fact that Δ̂GðμÞ asymptotes to a constant as μ → 0 is
not particularly surprising, given the assumed vanishing of
the quantity in Eq. (3.128). However, what is surprising is
that the asymptotic value in Eq. (3.129) receives contri-
butions not only from the light or massless string states, but
from the entire tower of string states, all the way up into the
UV. Indeed, all of the string states contribute to the
unrestricted supertraces in Eq. (3.129). This is a graphic
example of the UV=IR mixing inherent in a modular-
invariant theory such as string theory.
Let us now consider the behavior of Δ̂GðμÞ as we

proceed upwards in energy scale μ away from the deep-
IR limit. Indeed, much of the following discussion mirrors
the discussion for the Higgs mass in Ref. [2], to which we
refer the reader for details not provided here. Let us first
focus on energy scales for which μ ≪ Ms. In this regime,
we find that ϕ1 and ϕ4 continue to remain vanishingly
small. However, whether ϕ5 remains small as well for a
particular state of mass M depends on the value of
z ∼M=μ—i.e., on whether the state whose contribution
we are assessing is heavier or lighter than μ. In this
connection it is important to realize that our supertraces
receive contributions from the entire string spectrum. This
necessarily includes states with masses M ≳Ms, but may
also include potentially light states with nonzero masses far
belowMs. The existence of such light states depends on our
string construction and on the specific string model in
question. Thus, even though we are considering situations
in which μ ≪ Ms, there need not be any fixed hierarchical
relationship between μ and M.
In Fig. 4, we have plotted ϕ5ðM; μÞ as a function of μ=M.

Recalling that this is the contribution to Δ̂GðμÞ per unitAð2Þ
charge from a given physical bosonic string state of mass
M, certain aspects of this behavior are easy to understand.
For example, when μ ≪ M the state is much heavier than
the relevant energy scale μ and is effectively “integrated
out” of our theory. Thus all running stops, and ϕ5ðM; μÞ
becomes flat. Mathematically, this occurs because

Kðn;pÞ
ν ðzÞ ∼

ffiffiffiffiffiffi
πρ

2

r
zn−1=2e−z=ρ as z → ∞: ð3:130Þ

Thus all running is exponentially suppressed as
z ∼M=μ → ∞, leaving behind only an exponential tail.
By contrast, for energy scales μ ≫ M, our state is still
dynamical. We then see from Fig. 4 that the effective
contribution to the running from this state is effectively
logarithmic. Indeed, as z → 0, we find that [22]
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Kð0;1Þ
0 ðzÞ ∼ −

1

2
log zþ 1

2
½logð2πÞ − γ�;

Kð1;2Þ
1 ðzÞ ∼ 1; ð3:131Þ

where γ is the Euler-Mascheroni constant. For μ ≫ M, this
leads to an asymptotic logarithmic running for ϕ5ðM; μÞ of
the form

ϕ5ðM; μÞ ≈ −2 log
	
1ffiffiffi
2

p e−ðγþ1Þ μ
M



: ð3:132Þ

Finally, between these two extremes, we see that ϕ5ðM; μÞ
interpolates smoothly and even gives rise to a transient
“hump” in Δ̂GðμÞ, or equivalently a “dip” in gG. This
behavior results from the specific combination of Bessel
functions within ϕ5ðM; μÞ. Of course, the statistics factor
ð−1ÞF within the supertrace flips the sign of this contri-
bution for degrees of freedom which are fermionic.
Likewise, for any fixed scale μ, adjusting the mass M

upwards or downwards simply corresponds to shifting this
curve rigidly to the right or left, respectively. In this way
one can imagine summing over all such contributions to the
running (while also weighting each contribution by the
appropriate net numbers of states at each mass level) as one

takes the supertrace over the entire string string spectrum.
Of course, for any energy scale μ, the contributions
from states with M ≫ μ are exponentially suppressed,
as discussed above. Thus, at any energy scale μ, the only
states which contribute meaningfully to Δ̂GðμÞ are those
with M ≲ μ.
Thus, combining these Bessel-function contributions

with those from Eq. (3.129) and keeping only those
(leading) terms which dominate when M ≲ μ ≪ Ms, we
see that we can approximate the exact result in Eq. (3.122) as

Δ̂GðμÞ ≈
π

3
StrðX1 þ τ2X2Þ

þ 2 Str
M¼0

ðAð2Þ þ Bð2ÞÞ log
�
2

ffiffiffi
2

p
eMs

μ

�

− 2 Str
0<M≲μðA

ð2Þ þ Bð2ÞÞ log
	
1ffiffiffi
2

p e−ðγþ1Þ μ
M




ð3:133Þ

or equivalently

Δ̂GðμÞ ≈
ξ

6
Str Q̄2

H

−
2π

3

�
Str τ2Q̄2

HQ
2
G −

1

12
StrE τ2Q2

G

�

− 4 Str
M¼0

�
Q̄2

H −
1

12

�
Q2

G log

�
2

ffiffiffi
2

p
eMs

μ

�

þ 4 Str
0<M≲μ

�
Q̄2

H −
1

12

�
Q2

G log

	
1ffiffiffi
2

p e−ðγþ1Þ μ
M



:

ð3:134Þ

Given these results, our gauge couplings gGðμÞ can
exhibit a variety of running behaviors. These will ulti-
mately depend on the spectrum of states associated with
the string model under study. Of course, the final terms in
Eqs. (3.133) and (3.134) do not exhibit any running until
we reach μ ∼Mlightest, where Mlightest is the mass of the
lightest massive string state carrying a nonzero ðAð2Þ þ
Bð2ÞÞ charge. Therefore, if we first restrict our attention to
energy scales μ≲Mlightest, the only running that arises is
due to the massless ðAð2Þ þ Bð2ÞÞ-charged states. These are
the contributions that appear on the second and third lines
of Eqs. (3.133) and (3.134), respectively.
This running can be expressed in a manner which is more

traditional for describing the running of gauge couplings in
string theory, namely in terms of an RGE that relates the
couplings gGðμÞ to their values at the string scale Ms (see,
e.g., Refs. [13,14,23,24]). From Eq. (3.2), we obtain the
general running equation for the total gauge couplings
gGðμÞ:

FIG. 4. The function ϕ5ðM; μÞ in Eq. (3.124) and the corre-
sponding contribution to the beta function βΔ in Eq. (3.137),
plotted as functions of log10ðμ=MÞ (green and blue, respectively).
Note that ϕ5ðM; μÞ is the Bessel-function contribution to Δ̂GðμÞ
per unit Að2Þ charge from a given physical bosonic string state of
nonzero massM. When μ ≪ M, the state is effectively integrated
out of the theory, whereupon the running contribution ϕ5ðM; μÞ
asymptotes to a constant. However, at larger energy scales
μ ≫ M, the state is fully dynamical and produces a running
which is effectively logarithmic. Finally, within the intermediate
μ ∼M region, the Bessel-function expression for ϕ5ðM; μÞ in
Eq. (3.124) provides a smooth connection between these two
asymptotic behaviors and even gives rise to a transient “hump” in
the value of Δ̂GðμÞ, or equivalently a “dip” in the value of the
running coupling gGðμÞ.
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16π2

g2ðμÞ −
16π2

g2tree
¼ Δ̂GðμÞ ð3:135Þ

where from Eq. (3.134) we can write

Δ̂GðμÞ ¼ Δ̂GðMsÞ − 2 Str
M¼0

ðAð2Þ þ Bð2ÞÞ log
�

μ

Ms

�

≡ Δ̂GðMsÞ þ βΔð0Þ log
�

μ

Ms

�
: ð3:136Þ

Here the quantity βΔð0Þmay be regarded as the μ ¼ 0 value
of the general beta function βΔðμÞ for Δ̂GðμÞ, which in turn
is defined as

βΔðμÞ≡ ∂Δ̂GðμÞ
∂ log μ

¼ −
32π2

g3G
βgðμÞ ð3:137Þ

where βgðμÞ≡ ∂gG=∂ log μ is the usual beta function for
the gauge coupling gG. Indeed, we see from Eq. (3.136)
that βΔð0Þ is precisely −2 times the quantity given in
Eq. (3.128), i.e.,

βΔð0Þ ¼ −2 Str
M¼0

ðAð2Þ þ Bð2ÞÞ

¼ 4 Str
M¼0

�
Q̄2

H −
1

12

�
Q2

G: ð3:138Þ

Likewise, using an asterisk “�” to indicate the couplings
that would have arisen in our theory if βΔð0Þ had vanished,
we can write

Δ̂GðMsÞ ¼ Δ̂�
Gð0Þ þ κ ð3:139Þ

where Δ̂�
Gð0Þ is given in Eq. (3.129) and where [within our

regulator scheme defined by our regulator function ĜρðμÞ
with ρ ¼ 2] we have

κ ¼ −βΔð0Þ½1þ log ð2
ffiffiffi
2

p
Þ�: ð3:140Þ

Thus, putting the pieces together, we have the RGE

16π2

g2ðμÞ −
16π2

g2tree
¼ Δ̂GðMsÞ þ βΔð0Þ log

�
μ

Ms

�
ð3:141Þ

where Δ̂GðMsÞ is given in Eq. (3.139).
Thus far, Eq. (3.141) captures the effects of the massless

ðAð2Þ þ Bð2ÞÞ-charged string states. However, as μ increases
still further, additional ðAð2Þ þ Bð2ÞÞ-charged string states
enter the EFT and contribute their own individual loga-
rithmic contributions. Of course, if these additional states
have masses M ≫ Mlightest, the logarithmic nature of the
running shown in Fig. 4 from the state with mass Mlightest

will survive intact until μ ∼M. However, if the spectrum of

states is relatively dense beyond Mlightest, the logarithmic
contributions from each of these states must be added
together, leading to a far richer behavior.
One interesting possibility arises in cases of string

theories with large compactification radii R ≫ M−1
s . In

such cases, our theory will have Kaluza-Klein (KK) modes
with massesmn ∼ n=R that appear well belowMs. Thus, as
μ increases towardsMs, increasingly many KK states enter
the EFT. Although each KK state contributes the same
logarithmic running, our natural field-theoretic expectation
is that the full supertrace over the string spectrum will
begin to experience an accumulated effective power-law
growth, with Δ̂GðμÞ ∼ μδ where δ is the number of
spacetime dimensions whose inverse compactification radii
R−1 lie below μ. Indeed, this is precisely the field-theoretic
behavior discussed in Refs. [25,26], which can algebrai-
cally be interpreted as resulting from a beta function βΔðμÞ
which itself is growing polynomially with μ. However, as
we shall shortly see, in a string context we also have a
scale-duality symmetry under μ → M2

s=μ. This means that
even at energy scales μ ≪ Ms the winding modes asso-
ciated with such compactifications can also contribute.
Remarkably, these have the generic effect of cancelling this
power-law running (and even the original logarithmic
running), thereby producing a situation in which there
can be no running at all. Wewill refer to the region in which
such running terminates as a “fixed-point region.” This
nonrenormalization phenomenon, surprising as it is, is
actually quite general and will be discussed in detail
in Ref. [21].
Thus far our results are valid for energy scales below the

string scale. However, as mentioned above, it turns out that
we also have information about what happens in the
opposite region, namely that with μ > Ms: we simply enter
a “dual” infrared region in which this same behavior
again emerges, but in reverse. This is a direct consequence
of the modular invariance which we have been careful to
maintain throughout our calculations. Indeed, modular
invariance ensures that the running is symmetric under
the scale-inversion duality transformation

μ →
M2

s

μ
: ð3:142Þ

As a result, when plotted as a function of logðμ=MsÞ, the
behavior of Δ̂GðμÞ for μ ≪ Ms is reflected symmetrically
through the self-dual point μ� ¼ Ms to yield the reverse
behavior for μ ≫ Ms.
As discussed in Ref. [2], the origins of this scale-

duality symmetry are easily understood. To see this, we
note that in general the contribution of a string states of
mass M to the one-loop partition function experiences a
Boltzmann-like suppression factor ∼e−πα0M2τ2. Thus, for
any particular benchmark value τ2 ¼ t, we can separate our
string spectrum into two groups: “heavy” states whose
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Boltzmann suppressions at τ2 ¼ t are significant according
to some convention, and whose contributions therefore do
not require regularization, and “light” states whose
Boltzmann suppressions are not significant, and whose
contributions therefore require regularization. On this basis,
with an eye towards interpreting these results in terms of an
EFT with a running scale μ, we are directly led to identify
μ2 inversely with t. However, modular invariance tells us
that any physical quantities which depend on τ must be
invariant under τ → −1=τ. Along the τ1 ¼ 0 axis, this
becomes an invariance under τ2 → 1=τ2. This then immedi-
ately implies an invariance under t → 1=t, or equivalently
under μ → μ2�=μ where μ� is an arbitrary self-dual mass
scale. Of course, the choice of normalization for μ in
relation to t is purely a matter of convention, since the
former is a dimensionful spacetime quantity while the latter
is a dimensionless worldsheet quantity. In keeping with the
traditional string-theoretic conventions relating worldsheet
and spacetime physics, we take this conversion factor to be
given by α0. This then tells us that μ� ¼ Ms.
Although this scale-duality symmetry follows directly

from modular invariance, its implications are profound.
Ultimately, the existence of such a symmetry implies the
existence of a fundamental limit on the extent to which an
EFT perspective can possibly remain valid in string theory.
We have already noted in the Introduction that string theory
is rife with duality symmetries which defy EFT notions: an
immediate example of this is T-duality, under which the
physics associated with a closed string propagating on a
spacetime with a compactified dimension of radius R is
indistinguishable from the physics associated with a closed
string propagating on a spacetime with a compactified
dimension of radius R0 ≡ α0=R. This is true as an exact
symmetry not only for the string spectrum but also for all
interactions. Thus such strings cannot distinguish between
large and small compactification geometries, thereby pre-
venting us from establishing a Wilsonian EFT-like ordering
of length scales from large to small, or equivalently from IR
to UV. Phrased somewhat differently, the existence of a T-
duality symmetry tells us that there is a fundamental limit to
which we may consider a spacetime compactification
radius to be “small.” However, what we are seeing now
is that a somewhat different phenomenon—namely the
scale-duality symmetry under μ → M2

s=μ which is guar-
anteed by modular invariance—implies a fundamental limit
on the extent to which our EFT can exhibit UV behavior.
Indeed, pushing μ beyondMs only serves to reintroduce the
original IR behavior of our theory—a behavior which we
may now associate with the dual energy scale μ0 ≡M2

s=μ
associated with a “dual” EFT. In this sense, the energy
scales near Ms exhibit the “most possible UV” behavior
that can be realized.
At first glance, it may be tempting to associate this scale-

duality symmetry with T-duality, since both tend to place
limits on UV behavior and have similar algebraic forms.

We stress, however, that T-duality is a spacetime sym-
metry, and as such comes with certain assumptions about
the spacetime geometry. By contrast, modular invariance
is a fundamental worldsheet symmetry which is required
for the self-consistency of the theory itself. As such,
modular invariance and T-duality are unrelated. Indeed,
T-duality relates two a priori different string theories to
each other, one with a large compactification volume and
the other with a small compactification volume, and maps
a given state with KK and winding numbers ðm; nÞ in the
first theory to the equally massive ðn;mÞ state in the other.
By contrast, modular invariance is a symmetry that
operates within a single string theory and involves
Poisson resummations across the entire string spectrum
simultaneously. As such, no two string states in the theory
are directly related to each other under modular trans-
formations. Indeed, only through such nontrivial resum-
mations involving the entire string spectrum—including
the oscillator states as well—could we ever hope to obtain
features such as misaligned supersymmetry and super-
trace constraints (such as Str 1 ¼ 0) that simultaneously
balance all of our string states at all energy scales against
each other within a single string theory, even without
supersymmetry.
Taken together, all of these observations lead to a

running for Δ̂GðμÞ as sketched in Fig. 5. In the deep IR,
Δ̂GðμÞ approaches a constant unless the quantity in
Eq. (3.128) is nonzero. As μ increases, our theory then
passes through a “dip” region and a subsequent EFT region
characterized by logarithmic running. If our theory has
large compactification radii R ≫ M−1

s , the contributions
from the corresponding Kaluza-Klein and winding states
can then conspire to eliminate this running, leading to the
existence of a higher-dimensional string-scale fixed-point
region. Beyond Ms, our theory enters a “dual” regime in
which further increases in μ only reproduce the IR behavior
we have already seen, only in reverse.
We conclude this section with three comments. First,

we observe that the running of the gauge coupling is
essentially the same as the running of the Higgs mass
in Ref. [2]—indeed for μ ≲ME the only differences are
the coefficients of the different running terms. These
coefficients change because they tally the appropriate
charges of our states across the string spectrum, and the
charges that are appropriate or relevant change when we
switch our attention from the Higgs mass to the gauge
couplings.
Our second comment concerns the running of the gauge

couplings themselves. Within our calculations we have
implicitly assumed that these couplings remain perturbative
throughout the running shown in Fig. 5; otherwise our one-
loop calculation is no longer applicable and higher-loop
(and even nonperturbative) calculations would be needed.
Depending on the relative signs and magnitudes of the
various supertraces involved, these couplings could be in
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danger of becoming nonperturbative either as μ → MS
(which represents one extremum of the gauge-function
plotted in Fig. 5) or within the “dip” region.
Most importantly, however, there is a deep and funda-

mental difference between the running of the gauge
couplings Δ̂G and the running of the Higgs mass in
Ref. [2]. As we see directly from Eqs. (3.114), (3.117),
and (3.122), the gauge-coupling calculation now includes
contributions from off-shell string states for which
ML ≠ MR. This is a strange but not entirely unexpected
feature: states which are not physical in the underlying

string theory, and which therefore can only contribute in
string loop diagrams, also contribute to the running of the
gauge couplings in the corresponding low-energy EFT.
This feature did not appear in the running of the Higgs mass
in Ref. [2]. However, as we have seen, this feature
ultimately stems from the fact that the contributions to
the Higgs mass are proportional not to the square of the
helicity charge Q̄2

H, but rather to this quantity minus 1=12.
In field theory, this extra −1=12 is not problematic.
However, in string theory it has deep repercussions because
a pure number such as −1=12 cannot be subtracted from a

log

logarithmic
running

lightest

EFT approx.

deep
IR

EFT
region

dual EFT
region

dual
"dip" region dual

deep IR
(the most UV possible)

tree-level

lightest

onset of D > 4
stringy behavior

tree+one-loop

"dip" region string-scale
fixed-point region

FIG. 5. The one-loop running of the inverse gauge coupling Δ̂G ¼ 16π2=g2G for any gauge group G, as calculated from first principles
in a fully modular-invariant string framework. The tree-level contribution is sketched in red, and the total one-loop coupling is sketched
in green. In the deep IR, the coupling approaches an asymptotic value which receives contributions from all of the states in the string
spectrum which carry nontrivial helicity Að1Þ ∼ Q̄2

H charges. This assumes that our theory contains no net massless states charged under
Að2Þ þ Bð2Þ ∼ ðQ̄2

H − 1=12ÞQ2
G where Q2

G is the sum of the squares of the charges in the Cartan subalgebra of G; otherwise Δ̂GðμÞ
diverges in the IR limit. Moving towards higher values of μ, we see that a nontrivial scale dependence does not emerge until μ ∼Mlightest,
whereMlightest collectively represents the masses of the lightest massive states which are charged under Að2Þ þ Bð2Þ. The nonmonotonic
“dip” in gG (or “hump” in Δ̂G) that is observed in this region is a transient effect which smoothly connects the asymptotic deep-IR region
μ ≪ Mlightest to an EFT-like region Mlightest ≲ μ ≪ Ms. Beyond the dip region, the theory then enters an EFT-like region in which the
gauge coupling experiences a logarithmic running. As μ → Ms, it is possible that we might cross the energy threshold R−1 associated
with large compactification radii. In such cases, this logarithmic running can be modified by the appearance of Kaluza-Klein and
winding states which might appear at mass scales significantly below Ms and which might tend to cancel this logarithmic running,
leading to the existence of a higher-dimensional fixed-point regime, as shown. The subtleties involved in this behavior will be discussed
further in Ref. [21]. However, as a general principle, modular invariance requires that the running of Δ̂G exhibit an invariance under
μ → M2

s=μ. Thus, as μ increases beyond Ms, the theory inevitably begins to reenter an IR-like regime which we may associate with a
“dual” EFT, followed by a dual dip region and then a dual deep-IR region. The background colors of this sketch indicate the transition
from the deep IR (red) to the UV (blue) and then back to IR (red). As such, there is a maximum degree to which our theory can approach
the UV: once the energy scale μ passes the self-dual point μ ∼Ms, further increases in μ only push us towards increasingly IR behavior.
The quantity κ is defined in Eq. (3.139).
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squared-charge operator such as Q̄2
H because a pure number

has modular weight k ¼ 0 while the squared-charge oper-
ator has modular weight k ¼ 2. Modular invariance
thus requires that the −1=12 term be “completed” to the
weight-two modular function Ē2=12, and this in turn has
reverberations throughout the string spectrum, shifting left-
moving string masses ML relative to right-moving string
masses MR. This is why the nonlevel-matched string states
now survive the Rankin-Selberg procedure and appear in
our running calculation.
That said, these states do not contribute to the low-energy

running in a standard way. Normally, we would expect a
string state to contribute in the low-energy theory according
to its mass M2 ¼ ðM2

L þM2
RÞ=2. Indeed, this quantity in

some sense tells us how much worldsheet energy (as
measured by eigenvalues of L̄0 and L0 respectively) has
been “invested” in creating that state as an excitation in the
underlying worldsheet theory. However, what we are now
learning from Eqs. (3.114), (3.117), and (3.122) is that
although a given entwined string state may have a string-
theoretic mass given by M, it contributes to the low-energy
EFT precisely as if it had a mass simply given by ML. In
other words, the combined string-theoretic mass M is
irrelevant; what matters—and what we may therefore
consider to be the effective EFT mass in such theories, at
least as far as the gauge couplings are concerned—is
determined by ML alone. This, of course, is the effect of
the shift in left-moving masses relative to right-moving
masses induced by Ē2.
We also observe that the entwined resonances all

have left-moving masses that exceed the string scale:
ML ≥ ME ¼ ffiffiffi

2
p

Ms. Thus, one might be tempted to argue
that these states have no effects at energy scales below Ms.
However, this would not be correct. Thanks to scale-
inversion duality, any state that affects the running of
quantities above the string scale will also affect the running
of these quantities below the string scale. This is not a new
phenomenon unique to the entwined states. After all, we
have already seen that the behavior of our amplitudes in the
deep IR is in part determined by the extremely heavy string
states in the deep UV. In a similar way, the entwined states
also have effects below the string scale and thereby also have
an indirect role in affecting the low-energy EFT below the
string scale.
Ultimately, this can be understood from the perspective

of modular invariance and misaligned supersymmetry. In
the two cases studied in Ref. [2] (namely the cosmological
constant and the Higgs mass), the relevant supertraces
involved only physical states and closed under modular
transformations into themselves. Thus the corresponding
amplitudes in each case were fully modular invariant and
yet could be written purely in terms of supertraces over
only physical string states. However, for the present gauge-
coupling calculation, slightly different supertraces are
involved. Amongst these supertraces, those involving only

physical string states do not close into each other under
modular transformations. Rather, closure for these super-
traces also involves certain entwined supertraces as well.
This is ultimately why the entwinement occurs in these
theories. Through the entwinement, the off-shell string
states continue to make explicit contributions to the
relevant amplitudes.
This last observation is in fact part of a more general

lesson. In ordinary quantum field theory, one can mean-
ingfully seek to identify the physical effects that arise due
to the existence of specific states in the spectrum. For
example, we might attempt to determine the energy scales
at which a given state of massM contributes to the running
of a given quantity. However, in a modular-invariant theory,
this question has no meaning because of UV=IR mixing.
Every state within the spectrum is deeply connected to the
states at all other energy scales. It is therefore impossible to
uniquely isolate the contributions of a single state within
the spectrum because there is no modular-invariant way to
perform such an analysis.
As a dramatic example of this phenomenon, let us

consider the unphysical ðm; nÞ ¼ ð0;−1Þ proto-graviton
states [19] that arise within all string models, and ask
whether these states contribute to the corresponding one-
loop cosmological constant Λ. On the one hand, we might
claim that the proto-graviton states do not contribute to Λ
because we know that we can write Λ as the supertrace of
M2 over the purely physical states in the spectrum, as in
Eq. (2.3). However, a direct calculation of the one-loop
torus integral associated with Λ demonstrates that these
states not only contribute, but actually provide contribu-
tions that dominate over those of all other states (see, e.g.,
Table 2 of Ref. [27]). The underlying reason for this
apparent contradiction is that our question about which
states contribute does not have a modular-invariant answer.
Modular transformations allow us to reshuffle our contri-
butions so that the effects of one state can be reinterpreted
as the resummed effects of other states instead. Indeed, as
we have already asserted, the unentwined supertraces that
contribute to the gauge-coupling running do not close into
themselves under modular transformations; they also
involve the entwined supertraces. All supertraces—both
entwined and unentwined—therefore contribute together in
a modular-invariant way.
In this connection, we observe that the lightest entwined

states actually have vanishing string-theoretic masses.
These are the states that populate the ðm; nÞ ¼
ð−1=2;þ1=2Þ square in Fig. 3. Such states require only a
minimal amount of energy to produce on the worldsheet—
indeed, exactly the same amount of energy as required to
produce the physical massless states that populate the (0, 0)
square and presumably include the Standard-Model states.
It will be interesting to explore the ramifications of this
observation [20].
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IV. CONCLUSIONS, DISCUSSION, AND FUTURE
DIRECTIONS

In this paper we developed a general framework for
analyzing the running of gauge couplings within closed
string theories. Unlike previous discussions in the liter-
ature, our calculation fully incorporates the underlying
modular invariance of the string and includes the contri-
butions from the infinite towers of string states which are
ultimately responsible for many of the properties for which
string theory is famous, including its enhanced degree of
finiteness and UV=IR mixing. In order to perform our
calculations, we adopted a formalism [2] that was recently
developed for calculations of the Higgs mass within such
theories.
In general, this formalism—which builds upon the

Rankin-Selberg technique [4,5] but which also includes
additional critical features such as an identification between
worldsheet parameters and an effective spacetime energy
scale μ—gives rise to an “on-shell” EFT description in
which the final results are expressed in terms of supertraces
over the physical string states, and in which these quantities
exhibit an EFT-like “running” as a function of the scale μ.
We found, however, that the calculation of the gauge
couplings differs in one deep way from that of the
Higgs mass: while the latter results depend on purely
on-shell supertraces, the former results have a different
modular structure which causes them to depend on super-
traces over off-shell string states as well. Indeed, as
explained at the end of Sec. III D, the entwinement induced
by the modular completion of the helicity operator needed
for calculating the gauge couplings has “deformed” the
notion of physicality for the string states, allowing states
which are not level matched to nevertheless act as physical
states which contribute to the physical supertraces describ-
ing the values of physical string amplitudes. We have also
seen that although our results yield the expected logarith-
mic running of the gauge couplings within certain energy
scales, they also yield a number of intrinsically stringy
behaviors that transcend what might be expected within an
effective field theory approach.
A central feature of our treatment is our use of a modular-

invariant regulator Ĝρ to define a physical energy scale μ in
the system and simultaneously eliminate any logarithmic
divergences that might arise from the contributions of
certain massless states in the theory. Since this regulator
is modular invariant, it suppresses the contributions from
the lighter string states in a smooth manner which is
consistent with UV=IR mixing and which therefore natu-
rally incorporates the contributions from the infinite towers
of string states in a modular-invariant way. Use of this
regulator not only eliminates logarithmic IR divergences
but more importantly but also allows us to study how the
gauge couplings “run” as a function of the spacetime
energy scale μ. Indeed this procedure can be thought of as a
“functional renormalization group” (FRG) approach to

scaling [28–30] for UV-complete modular-invariant theo-
ries. Notably, the use of such a regulator allows us to
sidestep the need to introduce a sharp cutoff which would
be very difficult if not impossible to reconcile with our
fundamental UV=IR-mixed string symmetries. This also
allows us to avoid the need to designate which states are
“light” with respect to μ (and which therefore contribute to
the running), and which are “heavy” (and therefore do not).
Through such modular-invariant regulator functions, we
can develop a notion of “running” gauge couplings and
beta functions, with our modular-invariant regulator
allowing us to extract this apparent EFT-like behavior as
a function of the spacetime energy scale.
The final global picture that emerges is shown in Fig. 5.

Perhaps the most prominent feature is the existence of a
scale-duality symmetry, i.e., an invariance under
μ → M2

s=μ. As we have discussed, this is an inevitable
consequence of the modular invariance that underlies our
calculations. However, the impact of this scale-duality
symmetry is felt even at energy scales below the string
scale. For example, we have seen that the IR value of the
one-loop contribution to the gauge coupling is given by
π
3
StrðX1 þ τ2X2Þ where the supertrace is over all of the

states in the theory, regardless of their masses. From a naïve
field-theory perspective, such a supertrace would appear to
control a quadraticUV divergence. However, the deep IR in
such theories is also equivalent to the deep UV, where one
would expect all of the states to play a role. Indeed, these IR
predictions are RG invariants, in the sense that they define
fixed-point values. These predictions are also independent
of our choice of regulator function.
As we move away from the μ → 0 limit and proceed

towards higher energy scales, the system evolves away
from this asymptotic IR behavior. Once μ exceeds the
masses of the lowest-lying states, the one-loop contribution
to the gauge couplings passes through a localized “dip” and
then begins to experience a nontrivial logarithmic running
that can be associated with an EFT-like description. This
running then continues towards higher energy scales,
possibly passing through a sequence of EFT-like descrip-
tions. If our string compactification geometry has effective
radii R−1

i ≪ Ms, then this running continues until μ ∼ R−1
i .

Above this scale we find a surprising new behavior: the
running stops, with the gauge coupling entering a string-
scale “fixed-point” region. This surprising behavior
will be discussed in more detail in Ref. [21] and ultimately
results from the combined effects of both KK states and
winding states. It may seem strange that both kinds of
states should be playing a role at scales μ ≪ Ms, but this is
a direct consequence of the scale-duality symmetry under
μ → M2

s=μ. The fact that both KK and winding states
are simultaneously playing important roles further implies
that the behavior in this region is not only fully higher-
dimensional but also intrinsically stringy. This transition to
entirely stringy behavior is an inevitable and profound
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consequence of an RG procedure which is consistent
with modular invariance: a modular-invariant regulator
cannot distinguish between KK and winding modes and
therefore can only act to suppress the contributions of both
or neither.
Beyond μ ∼Ms, we enter the “dual” phase in which the

running of the gauge coupling is inverted. This inversion of
the running is quite remarkable. Indeed, from a naïve field
theoretic perspective, this kind of complete reversal would
be disallowed (by e.g., the a-theorem). Of course, we do
not expect such a theorem to hold in a UV=IR-mixed theory
such as string theory.
Indeed this inversion of the running of the gauge

couplings can best be understood by recognizing that the
fundamental degrees of freedom within the dual phase of
the theory are not those of the original low-energy theory.
The original theory and its dual are nothing but modular
transformations of each other—indeed, the relationship
between these two “phases” of the theory is outlined in
Fig. 4 of Ref. [2], where they are shown to lie along
different but equivalent “spokes” of the same fundamental
diagram. Thus each phase carries the same information and
can be viewed as representing the same fundamental theory,
consistent with the idea that modular symmetries (like
gauge symmetries) do not relate physically different
theories to each other, but rather represent redundancies
of description. However, under modular transformations,
the states within our string theory at all mass levels are
nontrivially mixed with each other. Thus, a given state in
the original theory is mapped to a highly nontrivial
combination of states in the dual theory, while each state
in the dual theory is likewise mapped to a highly nontrivial
combination of states in the original theory. Demanding
that this mapping nevertheless produce the same theory is
the essence of what it means for a theory to be modular
invariant. More explicitly, as discussed in Ref. [2], the
scale-duality map μ → M2

s=μ is intimately related to the
τ → −1=τmodular transformation evaluated along the τ1 ¼
0 line. This modular transformation induces a Poisson
resummation amongst the states of the original theory, so
that the degrees of freedom in the dual phase of the theory
with μ ≥ Ms are Poisson-resummed versions of the degrees
of freedom in the original phase of the theory with μ < Ms.
It is ultimately this Poisson resummation which is respon-
sible for the inversion in the running of the gauge couplings
once we cross between the μ < Ms and μ > Ms regions in
any modular-invariant theory.
Although this physical picture is relatively simple, it

actually encapsulates a considerable amount of nontrivial
physics. As we would expect in any UV=IR-mixed theory,
string modes that are light are being mixed with those
which are heavy. However, such heavy string states are
super-Planckian, and may (depending on the string cou-
pling) include black holes. They are also likely to include
so-called “long” strings, i.e., strings with large numbers of

oscillator excitations. However, as long as we maintain a
constant definition of the physical spacetime energy scale
μ, modular invariance requires that these states all conspire
(through Poisson resummations) to achieve this apparent
reversal in the directionality of the gauge-coupling running
at μ ¼ Ms.
It would be an interesting exercise to develop an

understanding of the dual running directly in terms of
these dual degrees of freedom. Moreover, although we have
concentrated in this paper on the one-loop running of the
gauge couplings, we expect similar results to apply to other
one-loop amplitudes, such as might be involved in string
scattering. Here too one must identify a physical string
scale μ in terms of certain renormalization conditions and
then study how such amplitudes depend on μ.
Above the string scale any alternative RG prescription

derived from such amplitudes—e.g., a prescription based
on suppressing the contributions of certain momentum
modes—should therefore be defined in terms of dual
momenta for those asymptotic eigenstates that can be
prepared in this regime. These would comprise the long-
string modes discussed above. In this way the μ → M2

s=μ
symmetrywould be faithfully respected. It is for this reason
that our worldsheet regulator prescription gives a correct
physical picture of renormalization, one which is appli-
cable for all values of μ. Indeed, such a regulator pre-
scription is also correctly aligned with both cosmological
[31] and thermal [32,33] dualities. We leave such inves-
tigations for future work.
Given these observations, we now discuss possible new

approaches to hierarchy problems. We begin by recalling
fromSec. II that within the string context there is no notion of
a spacetime energy scale μ before we insert a regulator
and identify μ in terms of the parameters of this regulator.
Thus, the unregulated modular integrals that govern the
couplings of the theory—integrals such asΔG or equivalently
Δ̂Gðμ ¼ 0Þ—are simply one-loop contributions to the effec-
tive action. Such integrals are either logarithmically diver-
gent (if the string spectrum contains a nonzero net number of
exactly massless X2-charged states), or finite otherwise.
Thus, upon introducing the modular-invariant regulator
Ĝρða; τÞ, it is inevitable that the values of the couplings in
the deep IR (i.e., as μ → 0) are also the “bare” couplings that
wewould expect to obtain asμ → ∞. To see this,wenote that
within the FRG approach the “average effective action” is
normally taken to interpolate between the effective action at
μ ¼ 0 and the “bare” action at μ → ∞. However, within our
UV=IR-mixed context, the effective actions that one obtains
in the μ → 0 and μ → ∞ limits are one and the same. This is
because the modular invariance of our regulator implies that
when we are regulating the IR, we are also equivalently
regulating the UV. Indeed, any divergence that would arise
within the τ → i∞ region of the modular integral (and which
thereforewould normally be interpreted as an IR divergence)
is the same as the divergence that would arise within the
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τ → 0 region of the modular integral (and which would
therefore be interpreted as a UV divergence).
This relation between UV and IR divergences has an

important implication. By locking these two types of
divergences together, our theory cannot exhibit any UV
divergence that is not also present as an IR divergence.
However, as we have seen, the τ → i∞ limit of our theory
can support at most a logarithmic IR divergence arising
from the contributions of certain massless states. This is an
expected divergence that indicates that in the low-energy
regime the theory will behave like a quantum field theory.
However, modular invariance then implies that we cannot
have quadratic divergences as τ → 0 (i.e., in the UV).
Indeed, in any modular-invariant theory, stringy “miracles”
(such as the cancellation of certain supertraces) have no
choice but to eliminate the quadratic divergences because
there is simply no place left for them. In this connection, we
note that this argument relies directly on modular invari-
ance alone, and is not specific to the specific form chosen
for our regulator so long as it is modular invariant.
This suggests that there is a fundamental difference

between hierarchy problems in field theory and hierarchy
problems in string theory (and in UV=IR mixed theories
more generally). In order to analyze hierarchy problems
within a Wilsonian field theory, one starts by separating
operators into “relevant” ones that grow in the IR and
“irrelevant” ones that grow in the UV. Relevant operators
typically begin at (possibly Gaussian) fixed points in the UV.
Their RG trajectories are then determined by a set of
“unpredicted” free parameters that are chosen by hand in
order tomake the associated couplings agreewith the desired
(presumably measured) IR values. Meanwhile the irrelevant
operators flow to attractive fixed points in the IR, thereby
becoming “predictions” of the theory. In this language,
hierarchy problems arise whenever there is an extreme
sensitivity of the relevant operators (which control the RG
trajectory) to the intermediate physics. Such sensitivity
confronts us with what is essentially a “shooting problem”
because it requires us to keep fine-tuningourRG trajectory in
order to hit the desired IR values. However the UV=IR
mixing in string theory (and its attendant μ → M2

s=μ sym-
metry) removes the underpinnings of this entire picture, as
operators cannot even be designated as “relevant” or “irrel-
evant” until we decide which direction corresponds to “UV”
and which corresponds to “IR” within our definition of the
energy scale. In this context we refer the reader to Fig. 4 in
Ref. [2], which graphically demonstrates the different
possibilities. Indeed, the only reliable quantities before we
make this choice are thevalues of supertraces over the infinite
towers of states. As we have mentioned, these are by
definition invariant under our choice of regulator and also
invariant under changes in the relevant energy scale. As such,
they remain invariant within the emergent EFT, simulta-
neously determining from the outset both the bare action and

the effective action towhich the theory must flow in the deep
IR regardless of what intermediate physics may exist.
We find these observations to be compelling foundations

for future, more general, phenomenological studies. In
particular, the transformation of apparent hierarchy problems
into statements about the properties of supertraces over
infinite towers of physical string states suggests that seem-
ingly miraculous cancellations and “magic zeros” are
unavoidable features of the effective field theory stemming
from a natural UV=IR-mixed modular-invariant theory. In
such a framework, the solutions to hierarchy problems such
as the gauge-hierarchy problem and the cosmological-con-
stant problem rely on conspiracies between physics at all
energy scales simultaneously, and would thus be essentially
invisible to low-energyobservers. In this sense, theymight be
considered to exhibit what has recently been dubbed “neutral
naturalness,” except in a form that does not involve pairwise
cancellation mechanisms that operate scale-by-scale but
rather through seemingly miraculous cancellations that
operate at all scales simultaneously. Within such frame-
works, retaining the full spectrum of states within our
calculations is therefore critical for obtaining a full under-
standing of naturalness.1

Given these comments, there exist many promising
avenues for future research targeting the development of a
fuller understanding of naturalness in UV=IR-mixed theo-
ries. Indeed, one of these is to study the manner in which the
runningof thegauge couplings is deformed in the presence of
large extra dimensions. For example, followingRef. [35], we
might study the running of the gauge couplings when our
theory has a compactification geometry of the form K × T 2

whereK has a characteristic volume near the string scale and
where T 2 indicates a two-torus with radii Ri ≫ M−1

s . The
results of this analysis will be presented in Ref. [21], where
we shall find that the promotion of logarithmic running to
power-law running—as expected from a field-theoretic
analysis [25,26]—does not occur in string theory. Indeed,
as far as power-law running is concerned, this is a kind of
“nonrenormalization” theorem for string theory. As we shall
see in Ref. [21], this cancellation of power-law running is the
result of a delicate conspiracy between modular invariance
and themanner in which extra spacetime dimensions emerge
in string theory as their radii become large. Indeed, this
cancellation ultimately reflects a subtle entanglement
between the properties of renormalization in higher dimen-
sions and the requirements ofmodular invariance.Moreover,
as we shall demonstrate in Refs. [17,21], there are also many
additional supertrace relations which govern the spectra of
modular-invariant string theories with large compactification
radii—supertrace relations whose role is to enforce these

1This point of view regarding modular symmetries addressing
hierarchy problems was first advocated in Ref. [1]. More recent
discussions along these lines can be found in Refs. [2,34].
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remarkable cancellations. Such supertrace relations are thus
also responsible for the finiteness properties of these theories.
The results shown in Fig. 5 also call for a reappraisal of

the possibilities for gauge-coupling unification in modular-
invariant theories. Although the gauge couplings continue
to exhibit logarithmic running—thereby suggesting that a
traditional logarithmic unification may continue to be
viable—the existence of a possible fixed-point regime near
the string scale has the potential to alter this situation. This
is especially true given that the scale of unification typically
assumed for heterotic strings is only one or two orders of
magnitude below the string scale [3,14]. It is even possible
that the existence of this fixed-point regime may serve to
reconcile the long-standing discrepancy [14] between the
string-predicted perturbative heterotic unification scale and
the traditional GUT scale extrapolated from experimental
measurements of the Standard-Model gauge couplings at
low energies.
Overall, the message seems clear. Hierarchy problems

(and even issues related to gauge-coupling unification)
assume traditional field-theory relationships between UV

and IR physics. By contrast, string theory tells us that we
have UV=IR mixing, misaligned supersymmetry, softened
divergences (even finiteness), scale duality, and so forth.
Thus, within the context of string theory, hierarchy prob-
lems may not be fundamental or survive in the manner we
normally assume.
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Université Paris-Saclay with the support of the P2IO
Laboratory of Excellence, the P2I axis of the Graduate
School Physics of Université Paris-Saclay, and the IN2P3
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