Dr Dibyendu Roy dibyendu.roy@durham.ac.uk
Post Doctoral Research Associate
Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell
Roy, Dibyendu; Roy, Sumit; Smallbone, Andrew; Roskilly, Anthony Paul
Authors
Dr Sumit Roy sumit.roy@durham.ac.uk
Academic Visitor
Professor Andrew Smallbone andrew.smallbone@durham.ac.uk
Professor
Professor Tony Roskilly anthony.p.roskilly@durham.ac.uk
Professor
Abstract
In recent years, ammonia has gained traction as a clean fuel alternative and a promising energy carrier. In this study, a trigeneration system fuelled by ammonia has been conceptualised, integrating a solid oxide fuel cell stack for power generation, a hot water unit for heating, and an NH3-H2O absorption chiller for cooling. The main objective of this study is to conduct a comprehensive techno-economic feasibility assessment of the proposed trigeneration system. The system's performance was analysed for a UK supermarket requiring electricity, heating, and cooling. A detailed sensitivity analysis was performed to investigate the influence of significant operating parameters, including current density, fuel utilisation factor, and cell temperature, on the system's performance. The system can deliver maximum power, heating, and cooling outputs of 357.6 kW, 257.9 kW, and 46.99 kW, respectively. The trigeneration system is projected to achieve its highest exergy efficiency at 60.94%, with a maximum fuel energy saving ratio of 47.67%. The lowest levelised cost of energy (LCOE) is estimated to be £0.1232 per kWh. This study's objective is also aligned with United Nations Sustainable Development Goal (SDG) No. 7, which aims to achieve “Affordable and Clean Energy”.
Citation
Roy, D., Roy, S., Smallbone, A., & Roskilly, A. P. (2023). Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell. Applied Energy, 357, Article 122463. https://doi.org/10.1016/j.apenergy.2023.122463
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 2, 2023 |
Online Publication Date | Dec 22, 2023 |
Publication Date | Dec 22, 2023 |
Deposit Date | Jan 11, 2024 |
Publicly Available Date | Jan 11, 2024 |
Journal | Applied Energy |
Print ISSN | 0306-2619 |
Electronic ISSN | 1872-9118 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 357 |
Article Number | 122463 |
DOI | https://doi.org/10.1016/j.apenergy.2023.122463 |
Public URL | https://durham-repository.worktribe.com/output/2077774 |
Files
Published Journal Article
(4.8 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
You might also like
Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search