Samiran Samanta
Modelling of hydrogen blending into the UK natural gas network driven by a solid oxide fuel cell for electricity and district heating system
Samanta, Samiran; Roy, Dibyendu; Roy, Sumit; Smallbone, Andrew; Roskilly, Anthony Paul
Authors
Dr Dibyendu Roy dibyendu.roy@durham.ac.uk
Post Doctoral Research Associate
Dr Sumit Roy sumit.roy@durham.ac.uk
Academic Visitor
Professor Andrew Smallbone andrew.smallbone@durham.ac.uk
Professor
Professor Tony Roskilly anthony.p.roskilly@durham.ac.uk
Professor
Abstract
A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally, different percentages of green hydrogen have been blended with natural gas to examine the techno-economic performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises steadily as the hydrogen blending percentage rises from 0% to 20%, then slightly drops at 50% H2 blending, and then rises steadily again until 100% H2 supply. The system's minimal levelised cost of energy was calculated to be 4.64 £/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable quantity of data that was received from the simulation model. Heat, power, and levelised cost of energy estimates using the ANN model were found to be extremely accurate, with coefficients of determination of 0.99918, 0.99999, and 0.99888, respectively.
Citation
Samanta, S., Roy, D., Roy, S., Smallbone, A., & Roskilly, A. P. (2024). Modelling of hydrogen blending into the UK natural gas network driven by a solid oxide fuel cell for electricity and district heating system. Fuel, 355, Article 129411. https://doi.org/10.1016/j.fuel.2023.129411
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 3, 2023 |
Online Publication Date | Aug 10, 2023 |
Publication Date | Jan 1, 2024 |
Deposit Date | Aug 10, 2023 |
Publicly Available Date | Aug 10, 2023 |
Journal | Fuel |
Print ISSN | 0016-2361 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 355 |
Article Number | 129411 |
DOI | https://doi.org/10.1016/j.fuel.2023.129411 |
Public URL | https://durham-repository.worktribe.com/output/1714965 |
Files
Published Journal Article
(3.5 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
You might also like
Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search