Dr Mahdiyar Nouri Rezaie mahdiyar.nouri-rezaie@durham.ac.uk
Postdoctoral Research Associate
Dr Mahdiyar Nouri Rezaie mahdiyar.nouri-rezaie@durham.ac.uk
Postdoctoral Research Associate
Negin Manavizadeh
Fatemeh Dehghan Nayeri
Maryam Massah Bidgoli
Ebrahim Nadimi
Farhad Akbari Boroumand
Low-temperature wet chemical bath deposition (CBD) method is one of the most efficient and least hazardous solution-based techniques which is widely employed to grow ZnO NRs. In CBD method, a seed layer is usually deposited on the substrate. In this paper, high quality ZnO and aluminum doped ZnO (AZO) seed layers are sputtered on the indium tin oxide (ITO) coated glass. In continue, aligned ZnO NRs are grown on the AZO and ZnO seed layers via CBD technique. The effect of the growth time and seed layer on the physical properties of as-grown ZnO NRs are investigated. According to the results, the seed layer plays an essential role on the growth orientation and growth rate of the ZnO NRs. The ZnO NRs grown on AZO seed layer are more aligned rather than ZnO seed layer due to their higher texture coefficients. The relative photoluminescence (PL) intensity ratio of near band emission (NBE) to deep level emission (DLE) (INBE/IDLE) for the ZnO NRs grown on AZO and ZnO seed layers are calculated as 7.45 and 2.62, respectively. To investigate the performance of the as-grown ZnO NRs, near ultraviolet organic light-emitting diodes (UV-OLEDs) using ZnO NRs array as n-type material and poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) conjugated polymer as p-type material have been fabricated. The total concentration of traps (), the characteristic energies () and the turn-on voltages for the devices with the structures of ITO/AZO/ZnO NRs/MEH-PPV/Al (device A) and ITO/ZnO/ZnO NRs/MEH-PPV/Al (device B) are attained 7.65 × 1016 and 7.75 × 1016 cm−3, 0.232 and 0.206 eV, 23 and 21 V, respectively. Moreover, based on the electroluminescence (EL) spectra, the NBE peaks for device A and B are obtained nearly in the wavelengths of 382 and 388 nm, respectively. Finally, various charge carrier transportation processes of prepared UV-OLEDs have been studied, systematically.
Rezaie, M. N., Manavizadeh, N., Nayeri, F. D., Bidgoli, M. M., Nadimi, E., & Boroumand, F. A. (2018). Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceramics International, 44(5), 4937-4945. https://doi.org/10.1016/j.ceramint.2017.12.086
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 12, 2017 |
Online Publication Date | Dec 14, 2017 |
Publication Date | Apr 1, 2018 |
Deposit Date | Dec 15, 2023 |
Journal | Ceramics International |
Print ISSN | 0272-8842 |
Electronic ISSN | 1873-3956 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 44 |
Issue | 5 |
Pages | 4937-4945 |
DOI | https://doi.org/10.1016/j.ceramint.2017.12.086 |
Public URL | https://durham-repository.worktribe.com/output/2027486 |
Hybrid inorganic-organic light-emitting heterostructure devices based on ZnO
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search