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We observe synchronization in a thermal (35–60 °C) atomic (Rb) ensemble driven to a highly excited
Rydberg state (principle quantum number n ranging from 43 to 79). Synchronization in this system is
unexpected due to the atomic motion; however, we show theoretically that sufficiently strong interactions
via a global Rydberg density mean field cause frequency and phase entrainment. The emergent oscillations
in the vapor’s bulk quantities are detected in the transmission of the probe laser for a two-photon excitation
scheme.
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Nonlinear systems are abundant in nature, where the
nonlinearities introduce a range of rich and varied phenom-
ena. Well known is the ability of nonlinear systems to
generate multiple steady states, so that the system’s state
is determined by its past trajectory and hysteresis loops may
form. Such multistable states have been observed numer-
ously in biological [1–4], mechanical [5–7], and atomic
systems [8–11]. Nonlinear dynamics and bifurcation theory
provide a modeling framework of these phenomena, ena-
bling a fundamental understanding of the underlying proc-
esses from within a generalized mathematical framework.
When adding dissipation to a conservative nonlinear

system, the resulting dynamics get even richer, and the
system can support rather unexpected types of stable
solutions. Under certain conditions, dissipative systems with
nonlinearities can support chaotic behavior [12,13] or limit
cycles and time-periodic solutions [14,15]. A Hopf bifurca-
tion may cause the appearance of attractive limit cycles,
which leads to self-sustained oscillations of the system. This
oscillatory behavior is not imprinted by an external drive but
arises fundamentally from the system’s dynamics. Such self-
oscillating systems have been found to model biological
processes [16–20] and physical systems [21–24].
A very curious question regards the behavior of an

ensemble of self-sustained oscillators experiencing a form
of coupling to another, or to an external force. First studied
by Kuramoto for an ensemble of globally coupled oscil-
lators with different natural frequencies [25], it has been
found that—under certain conditions—all or a subset of the
oscillators begin to lock in frequency and phase [26–28].

As a result, a transition toward a synchronized state occurs in
the ensemble. This synchronization transition has been
used to explain, e.g., the strong lateral vibrations of the
Millenniumbridge, London, on its opening day [29], though
this is contested [30], or the Belousov-Zhabotinsky and
other chemical reactions [31,32]. In nature, synchronization
occurs in ensembles of fireflies flashing in unison [33], the
chirps of snowy tree crickets [34], and occasionally in the
applause of audiences [35].
To further study the emergence of synchronization

and the resulting nonequilibrium dynamics, a simple and
easily controllable system with a macroscopic number of
coupled oscillators and tunable properties is highly desir-
able. In the following, we demonstrate that the occurrence
of a synchronized phase is expected in a continuously
driven, dissipative three-level system with a power-law
coupling to a mean field, and report on the observation of
synchronization in a hot Rydberg vapor. A surprising, but
expected, feature of this system is that oscillations of the
bulk quantities remain observable even though the indi-
vidual constituents are undergoing random motion.
Rydberg atoms are known to interact strongly with a

power-law scaling in distance. This translates into a mean-
field approach [36] with power-law scaling β of the
Rydberg level shift in Rydberg density ρrr. A similar
power-law scaling also can be used to model the level
shift induced by ionization [37] or other mean-field
inducing mechanisms. Adopting this mean-field approach,
the resulting equations of motion (EOMs) are formulated
for a three-level basis set with coherent driving by Ωx and
dissipation Γyz; see Fig. 1(a). For β ≠ 0, the EOMs are
nonlinear, and their steady states are defined by the roots of
a polynomial of order maxð4β þ 1; 1Þ in ρier.
The resulting steady-state solutions of the nonlinear

EOMs reveal regions of multistability where an odd number
of equilibria exist for one set of parametersΩx,Δx, Γyz,V, β.
To extract the stability of the solutions, the spectrum of
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eigenvalues λj of the linearization (Jacobi) is evaluated at the
steady state [38]. Stability is guaranteed if ReðλjÞ < 0 for the
eight nonconstant eigenvalues. Consequently, the repulsive
branch marked in red in Fig. 1(b) is detected by spectral
analysis. However, the steady states indicated in green are
also unstable. Here, a Hopf bifurcation occurs where a
complex-conjugate pair of eigenvalues λj crosses the imagi-
nary axis and renders the steady state unstable.As a result, the
system is attracted toward a limit cycle which leads to robust
self-sustained oscillations of the system parameters in time.
Figures 1(c) and 1(d) show that the system is attracted to the
same limit cycle for different initial states, but each initial
state leads to a different phase in the limit cycle at any fixed
time t. This freedomof phase in the limit cycle is indicative of
a self-oscillating system and fundamentally distinguishes it
fromaperiodically driven systemwhere the phase in the limit
cycle is locked to that of the drive. The freedom of phase in
the resulting limit cycle has also been described using the
language of continuous time crystals [39,40]. The time-
crystal interpretation in the context of our experiment is
discussed in Appendix E of the Supplemental Material [41].
Although optical bistability has been found experimen-

tally in driven-dissipative hot Rydberg vapors [10], one
would intuitively expect any oscillations in this system to
average out due to atomic motion. The motion-induced
dephasing for different atomic velocities results in a spread
of the natural frequencies of the limit cycles and the phases
therein. Although about half of the velocity classes are
attracted toward a limit cycle, no macroscopic oscillations
can be seen, as shown by the black line in Fig. 2(a).

However, the above argumentation does not account for
the spatial dimension of the situation. The Rydberg level
shift of any atom in the vapor depends on the spatial
Rydberg density of its local environment so that the
different velocity classes do not evolve independent of
another. Rydberg atoms of one velocity class experience a
level shift depending on the Rydberg population of the
other velocity classes in the vapor and, in turn, influence
the dynamics of these other velocity classes. When taking
this global coupling between the velocity classes into
account, the resulting dynamics of the vapor is very
different as shown in Fig. 2(b) (see also Appendix C in
the Supplemental Material [41]). After an initial transient
phase, synchronization sets in where the velocity classes
begin to oscillate in lockstep with a single frequency and
fixed phase relation. This is possible because the phase of a
velocity class within its limit cycle is free and therefore
easily adjusted by the mean field. With a growing number
of velocity classes oscillating in phase lock, the mean field
strength increases which forces even more velocity classes
to align their oscillations until eventually a partially or
completely synchronized state is reached.
This transition toward a synchronized state of globally

coupled oscillators is known since Christiaan Huygens’s
time [45] and has since been studied extensively from a
mathematical perspective. After the initial work by Winfree
[46] and Kuramoto [25], the study of synchronization has
been extended to more general forms of the global coupling
force [27,28] and other situations [47]. Famous examples
where synchronization is experimentally demonstrated for
few oscillators is the synchronization of pendulum clocks
[45] or metronomes [48] fixed to a common support which

FIG. 2. Thermal vapor simulation showing emergence of
synchronization. A thermal vapor simulation for uncoupled (a)
and coupled (b) velocity classes shows the emergence of
synchronization via the Rydberg density induced mean field.
The time evolution and corresponding steady-state spectrum are
shown on the left and right, respectively. Simulation parameters
were Ωp=Γge ¼ 6, Ωc=Γge ¼ 4, Δp ¼ 0, Δc=Γge ¼ −11,
Γer=Γge ¼ 10−5, Γgr=Γge ¼ 10−2, V=Γge ¼ −800, β ¼ 2 and
Nvel ¼ 101 velocity classes with equal populations. The atomic
velocity distribution corresponds to that of a rubidium vapor on the
D2 line at 48 °C.

FIG. 1. Single velocity class model. The basic model with the
relevant parameters is shown in (a). An example steady-state
solution of the resulting nonlinear OBEs is shown in (b) where the
dark-red steady-state branch is repulsive and green indicates the
limit cycle region. For a fixed detuningΔc=Γge ¼ −1, indicated by
the dashed line, the time evolution from an initial state jΨit¼0 ¼
ð1 − xÞjgi þ xjri with x∈ ½0; 1� toward a limit cycle is shown in
(c). For the same time traces, a phase space projection of the limit
cycle in the ρge-plane is shown in (d). The other model parameters
were set to Δp ¼ 0, Ωp=Γge ¼ 3.8, Ωc=Γge ¼ 2, V=Γge ¼ −12,
Γer=Γge ¼ 10−5, Γgr=Γge ¼ 10−2, and β ¼ 3.
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provides the coupling. However, large numbers of globally
coupled oscillators with widely tunable properties are not
so easily available. Therefore, a hot Rydberg vapor with
∼Oð109Þ atoms in the beam volume, and a somewhat lower
number of oscillators, provides an ideal testbed for an
experimental study of the synchronization transition for
large numbers of constituent oscillators.
In our experiment, we use 87Rb number densities of

ρ87Rb ∈ ½0.1; 6.1� × 1011 cm−3, which corresponds to tem-
peratures from 35 °C to 60 °C for a vapor of rubidium with
natural abundance. The probe laser was locked to a detuning
of Δp=2π ¼ −140 MHz below the 87Rb resonance with
the intermediate state j5S1=2; F ¼ 2i → j5P3=2; F ¼ 3i. The
counterpropagating coupling laser was set to scan through
two-photon resonance with a jnS1=2i or jnD5=2i Rydberg
state at typical scan speeds of up to 2π × 10 MHz=ms.
Typical Rabi frequencies were in the range Ωp=2π ∈
½100; 330� MHz and Ωc=2π ≤ 35 MHz for Rydberg states
with principal quantum numbers n ranging from 43 to 79.
Different beam waists of up to w ≤ 1 mm and beam waist
ratios of wp=wc ≈ 2, 0.9, 0.5 have been tried, but no direct
dependence on the beam waists has been observed. The data
presented here were obtained for wp ¼ 390 μm and
wc ¼ 440 μm. Setup and relevant level scheme are shown
in Figs. 3(a) and 3(b).
Figure 3(c) shows a typical series of scans for fixed

probe and increasing coupling Rabi frequency. After an
onset of bistability in the optical response, a window
featuring oscillations in the vapor transmission opens.

This synchronization window widens for a further increase
in coupling Rabi frequency. When instead setting the
coupling Rabi frequency to a fixed value, the width of
the oscillation region decreases with increasing probe Rabi
frequency (see also Appendix D in the Supplemental
Material [41]). In the various parameter regimes that were
explored experimentally, the synchronization regime is
often preceded by bistability but not necessarily so. We
find a strong dependence of the onset of oscillations on the
Rydberg state and vapor density. Higher atom number
densities require lower Rabi frequencies for the oscillations
to set in. This behavior is expected from a synchronization
perspective since larger global coupling strengths require
lower mean-field strengths to initiate entrainment.
We observe an onset of synchronization for coupling to

both nS and nD Rydberg states, though it is easier to
explore the behavior and scaling when coupling to D states
due to the stronger dipole coupling at similar n. The
oscillations were also observed when coupling a fourth
P or F state with an additional rf field in both the weak and
strong driving limit, respectively. In the fully Autler-
Townes split regime, oscillations occurred as long as the
Rydberg population was high enough. The presence of
synchronization is therefore neither a purely three-level
phenomenon, nor does it depend on the orbital angular
momentum of the Rydberg state.
With all system parameters held constant and fixed laser

detunings, the synchronized state persists on timescales on
the order of minutes, and the oscillations maintain their
shape. Analysis of a time trace reveals a narrow frequency

FIG. 3. Setup and example onset of oscillations. (a) The counterpropagating probe and coupling lasers are polarization cleaned with a
polarizing beamsplitter (PBS) after exiting the fibers. The subsequent acousto-optic modulator (AOM) and aperture are used to remote
control the laser powers incident on the heated, 4 cm long rubidium cell. The probe light is detected by a photodetector (PD). (b) The
relevant level scheme for two-photon spectroscopy in rubidium. The coupling laser addresses either the jn0S1=2i or the jnDmJ

i state(s). In
(c), an example set of traces obtained for fixed probe Rabi frequency Ωp=2π ¼ 191 MHz and increasing coupling Rabi frequencies is
shown. The Rydberg laser is coupled to the j43D5=2i state, and the number density is ρ87Rb ¼ ð4.7� 0.2Þ × 1010 cm−3. Here, the
oscillatory regime is preceded by an onset of bistability.
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peak with a spectrum of weaker, higher harmonics (also
shown in Appendix D of the Supplemental Material [41]).
The oscillation frequency νosc of the first peak was usually
observed to lie between 10 kHz and 25 kHz, though
persistent oscillations of up to 43 kHz were measured.
In Fig. 3(c) one can see that the oscillation frequency varies
along the coupling laser scan. As a general trend, an
increase in oscillation frequency νosc with increasing
Rabi frequencies was observed. Additionally, the formation
of several separate synchronization regions, typically
with a different range νosc but similar shapes of the
oscillations along the region, has been found. This is
also visible in Fig. 3(c) where the two regions share a
boundary at −Δc=2π ≈ 26, 36, 48 MHz for Ωc=2π ¼ 29,
33, 38 MHz, respectively.
Figure 4(a) shows the change in oscillation shape and

frequency with increasing Δc. Each highlighted segment
samples the time dependence at a particular detuning as the
laser frequency is scanned in time slowly relative to νosc.
The rightmost enlargement (red) belongs to the next
synchronization region beginning at Δc=2π ≈ −45 MHz.
It shows again the sawtoothlike shape at its lower frequency
end that can also be seen in the two leftmost insets.
Figures 4(b)–4(d) show the results obtained with the
thermal vapor simulation. The imaginary part of the
coherence ρige shown in (c) and (d, dashed) is linearly
proportional to the probe laser transmission via the probe
electric susceptibility [49]. Two limit cycle regions appear

in the spectrum (b), though a cross section of phase space
shows that the case Δc=Γge ¼ −3 is not a limit cycle but
resembles a system near a strange attractor. Generally, the
thermal vapor model shows regions of multistability which
implies that the pointwise integration technique in (b) can-
not accurately model a laser scan. This is because the
thermal vapor system’s trajectory depends on its past state
and the attractor it is drawn to, which pointwise integration
does not account for.
The thermal vapor model reproduces the observed

experimental behavior phenomenologically. This includes
changes in the width of the synchronization region with
changes in Ωp or Ωc and the earlier onset of oscillations at
lower Ωc for increasing interaction strengths V as shown in
the data of Appendix D in the Supplemental Material [41],
as well as the expected shape of the oscillations. Therefore,
we attribute the emergence of macroscopic oscillations in
the bulk response of a hot Rydberg vapor to a Kuramoto-
like synchronization transition for sufficiently large global
coupling strengths. Possible mechanisms causing the
power-law scaling of the Rydberg density mean field are
Rydberg interactions [36] or charge-induced Stark shifts
due to ionization [37], though other effects could possibly
lead to similar power-law scaling behaviors.
In summary, we observe the transition toward synchro-

nization in a strongly driven, dissipative, hot Rydberg
vapor. The observed changes of the synchronized region
with variation of the Rabi frequency, vapor density, and

FIG. 4. Change in oscillation shape and frequency along coupling laser scan. (a) The oscillation region for a scan across resonance
with j43D5=2i at T ¼ ð52.0� 0.5Þ °C with Ωp=2π ¼ 191 MHz, Ωc=2π ¼ 37 MHz, and a scan rate of 2π × 10 MHz=ms. The colored
insets show an enlargement of the trace in the color-shaded regions, each of width 2π × 4.8 MHz. Different shapes of the oscillations
can be distinguished. (b) Pointwise integrated spectrum with errorbars denoting the amplitude of the oscillations. The time evolution
toward a limit cycle is shown in (c) with the inset showing only the limit cycles approached after an integration time of t ¼ 5000Γ−1

ge . In
(d), the oscillations in Rydberg population ρrrr (solid) and in the imaginary part of the cρige (dashed) are shown. The case Δ ¼ −3Γge did
not approach a limit cycle within the maximum integration time but behaves similar to a system near a strange attractor. The simulation
assumes a thermal vapor with Nvel ¼ 101 velocity classes with equal populations, Ωp ¼ 1.5, Ωc ¼ 1, Δp ¼ 0, Γer ¼ 10−6, Γgr ¼ 10−3,
and V ¼ −300, in units of Γge, and β ¼ 2.
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interaction strength is reproduced by a theoretical model
extended to a thermal vapor simulation. The model’s
nonlinearity leads to the emergence of attractive limit
cycles for individual velocity classes through a Hopf
bifurcation. Under the influence of global coupling through
the shared Rydberg density, the constituent oscillating
velocity classes synchronize in a thermal vapor, which
leads to periodic oscillations of the vapor’s bulk quantities.
The resulting synchronized phase is robust and stable, and
therefore ideally suited for an experimental investigation of
the emergent nonequilibrium phase of matter. It provides a
simple platform for the study of synchronization in a
nonlinear system with a truly macroscopic number of
oscillators.

Note added.—During completion of this work, two other
reports of oscillations in a continuously driven hot Rydberg
vapor were reported. In Ref. [50], the oscillations are of a
transient nature and the probe Rabi frequency is signifi-
cantly lower than in this work. The authors attribute the
origin of the limit cycles to spatial inhomogeneities and
clustering of Rydberg atoms. In Ref. [51], the experimental
parameter regime is similar to this work. The limit cycles
are attributed to a competition for Rydberg population
between energetically closely spaced Rydberg states.
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[35] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L.

Barabási, Nature (London) 403, 849 (2000).
[36] N. R. de Melo, C. G. Wade, N. Šibalić, J. M. Kondo,

C. S. Adams, and K. J. Weatherill, Phys. Rev. A 93,
063863 (2016).

[37] D. Weller, J. P. Shaffer, T. Pfau, R. Löw, and H. Kübler,
Phys. Rev. A 99, 043418 (2019).

[38] P. Hartman, Ordinary Differential Equations (Society for
Industrial and Applied Mathematics, Philadelphia, 2002),
10.1137/1.9780898719222.

PHYSICAL REVIEW LETTERS 131, 143002 (2023)

143002-5

https://doi.org/10.1038/nature02298
https://doi.org/10.1073/pnas.0308265100
https://doi.org/10.1073/pnas.0308265100
https://doi.org/10.1016/j.bpj.2013.02.028
https://doi.org/10.1063/1.3413995
https://doi.org/10.1103/PhysRevLett.87.211801
https://doi.org/10.1063/1.1808507
https://doi.org/10.1021/nl9034175
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.73.1103
https://doi.org/10.1103/PhysRevLett.111.113901
https://doi.org/10.1038/s41467-018-05597-4
https://doi.org/10.1038/s41467-018-05597-4
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1017/cbo9780511608162
https://doi.org/10.1007/978-1-4612-6374-6
https://doi.org/10.1007/978-1-4612-6374-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1016/j.apm.2012.02.012
https://doi.org/10.1016/j.apm.2012.02.012
https://doi.org/10.1137/050640072
https://doi.org/10.1137/050640072
https://doi.org/10.3934/dcdsb.2020044
https://doi.org/10.3934/dcdsb.2020044
https://doi.org/10.1103/PhysRevA.84.031402
https://doi.org/10.1103/PhysRevA.84.031402
https://doi.org/10.1103/PhysRevLett.76.404
https://doi.org/10.1103/PhysRevLett.76.404
https://doi.org/10.1038/s41586-022-04970-0
https://doi.org/10.1080/14786442608564127
https://doi.org/10.1080/14786442608564127
https://doi.org/10.1016/s0167-2789(00)00094-4
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1061/(asce)1084-0702(2001)6:6(412)
https://doi.org/10.1061/(asce)1084-0702(2001)6:6(412)
https://doi.org/10.1038/s41467-021-27568-y
https://doi.org/10.1038/s41467-021-27568-y
https://doi.org/10.1126/science.254.5039.1750
https://doi.org/10.1086/415929
https://doi.org/10.1126/science.166.3907.891
https://doi.org/10.1038/35002660
https://doi.org/10.1103/PhysRevA.93.063863
https://doi.org/10.1103/PhysRevA.93.063863
https://doi.org/10.1103/PhysRevA.99.043418
https://doi.org/10.1137/1.9780898719222


[39] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme, A.
Hemmerich, and H. Keßler, Science 377, 670 (2022).

[40] T. Liu, J.-Y. Ou, K. F. MacDonald, and N. I. Zheludev, Nat.
Phys. 19, 986 (2023).

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.143002 for further
details on the nonlinear EOMs, the thermal vapor integrator
scheme, supplemental experimental results, and comments
on the continuous time crystal property. The Supplemental
Material includes Refs. [37,42–44].

[42] P. C.Parks,Math.Proc.CambridgePhilos.Soc.58, 694(1962).
[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes 3rd Edition (Cambridge
University Press, Cambridge, England, 2007).

[44] N. Šibalić, J. Pritchard, C. Adams, and K. Weatherill,
Comput. Phys. Commun. 220, 319 (2017).

[45] A. R. Willms, P. M. Kitanov, and W. F. Langford, R. Soc.
Open Sci. 4, 170777 (2017).

[46] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
[47] T. E. Lee and H. R. Sadeghpour, Phys. Rev. Lett. 111,

234101 (2013).
[48] J. Pantaleone, Am. J. Phys. 70, 992 (2002).
[49] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev.

Mod. Phys. 77, 633 (2005).
[50] D.-S. Ding, Z. Bai, Z.-K. Liu, B.-S. Shi, G.-C. Guo, W. Li,

and C. S. Adams, arXiv:2305.07032.
[51] X. Wu, Z. Wang, F. Yang, R. Gao, C. Liang, M. K. Tey, X.

Li, T. Pohl, and L. You, arXiv:2305.20070.

PHYSICAL REVIEW LETTERS 131, 143002 (2023)

143002-6

https://doi.org/10.1126/science.abo3382
https://doi.org/10.1038/s41567-023-02023-5
https://doi.org/10.1038/s41567-023-02023-5
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.143002
https://doi.org/10.1017/S030500410004072X
https://doi.org/10.1016/j.cpc.2017.06.015
https://doi.org/10.1098/rsos.170777
https://doi.org/10.1098/rsos.170777
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.1119/1.1501118
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://arXiv.org/abs/2305.07032
https://arXiv.org/abs/2305.20070

