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Eigenvalue estimates for the magnetic Hodge Laplacian
on differential forms

Michela Egidi, Katie Gittins, Georges Habib, and Norbert Peyerimhoff

Abstract. In this paper we introduce the magnetic Hodge Laplacian, which is a generaliza-
tion of the magnetic Laplacian on functions to differential forms. We consider various spectral
results, which are known for the magnetic Laplacian on functions or for the Hodge Laplacian on
differential forms, and discuss similarities and differences of this new “magnetic-type” operator.

1. Introduction and statement of results

The classical magnetic Laplacian on a Riemannian manifold .M n; g/ associated to a
smooth real 1-form ˛ 2�1.M/ acts on the space of smooth complex-valued functions
C1.M;C/ and is given by

�˛ D ı˛d˛; (1.1)

where d˛ ´ dM C i˛ and ı˛ ´ ıM � ih˛]; �i (note that ıM is the L2-adjoint of
dM ). Here ˛] 2X.M/ is the vector field corresponding to the 1-form ˛ via the musi-
cal isomorphism h˛]; Xi D ˛.X/. The 1-form ˛ is called the magnetic potential and
dM˛ is the magnetic field. The magnetic Laplacian �˛ can be viewed as a first order
perturbation of the usual Laplacian �M D ıMdM , namely for any f 2 C1.M;C/,

�˛f D �Mf � 2ihgradf; ˛]i C .j˛]j2 � i div˛]/f: (1.2)

In the case of a closed manifold or a compact manifold with boundary, both oper-
ators �M and �˛ (with suitable boundary conditions when @M ¤ ;) have a discrete
spectrum with non-decreasing eigenvalues with multiplicity denoted by .�k.M//k2N

and .�˛
k
.M//k2N , respectively. There are very few Riemannian manifolds where the

complete set of eigenvalues can be given explicitly. Amongst them is the unit round
sphere Sn with the standard metric g, whose eigenfunctions can be described as spher-
ical harmonics. In Appendix A, we give an explicit derivation of the spectrum of a
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magnetic Laplacian on .S3; g/ with a special magnetic potential ˛. This derivation is
based on the Hopf fibration S1 ,! S3! S2, and ˛ is a constant magnetic field along
the S1-fibers.

In analogy with the generalization of the usual Laplacian �M on functions to the
Hodge Laplacian ıMdM C dM ıM on differential forms, it is natural to generalize
the magnetic Laplacian on functions to complex differential forms as follows. On the
set of complex-valued differential p-forms �p.M;C/, we define

�˛ ´ ı˛d˛ C d˛ı˛

where d˛ ´ dM C i˛^ and ı˛ ´ ıM � i˛]y is its formal adjoint. Both d˛ and ı˛

can also be expressed via the magnetic covariant derivativer˛XY ´r
M
X Y C i˛.X/Y

for anyX;Y 2C1.TM ˝C/ (see formula (3.1)). We refer to this operator�˛ acting
on �p.M;C/ as the magnetic Hodge Laplacian on complex p-forms.

We establish the following results for the magnetic Hodge Laplacian on an ori-
ented Riemannian manifold .M n; g/.

(a) We show that the magnetic Hodge Laplacian commutes with the Hodge star
operator (see Corollary 3.2).

(b) We derive a magnetic analogue of the classical Bochner–Weitzenböck for-
mula (see Theorem 3.4).

(c) We prove gauge invariance of the magnetic Laplacian on forms �˛ (see
Corollary 3.11).

(d) We obtain a Shigekawa-type result (see Theorem 3.12) for the magnetic
Hodge Laplacian �˛ on a closed Riemannian manifold M in the case where
M has a parallel p-form and ˛ is a Killing 1-form (for the original statement,
see [29]).

(e) Following a result by Gallot and Meyer [13] for the Hodge Laplacian, we
derive a lower bound for the first eigenvalue of the magnetic Hodge Laplacian
for closed manifolds (see Theorem 4.2).

(f) Following a result by Colbois, El Soufi, Ilias, and Savo [6] for the magnetic
Laplacian on functions, we derive an upper bound for the first eigenvalue of
the magnetic Hodge Laplacian for closed manifolds (see Theorem 4.5).

(g) We show that in general the diamagnetic inequality does not hold for mag-
netic Hodge Laplacians (Corollary 4.10). In fact, we give a counterexample
which is based on the calculations in Appendix A. In addition, we give an
explicit characterization which determines when the diamagnetic inequality
holds for �t� with � a Killing vector field (see Corollary 4.9).
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(h) Following the work of Raulot and Savo in [26], we derive a Reilly formula for
the magnetic Hodge Laplacian on Riemannian manifolds with boundary (see
Theorem 5.1) and use it to derive a lower bound for the first eigenvalue of the
magnetic Hodge Laplacian on an embedded hypersurface of a Riemannian
manifold (see Theorem 6.2).

(i) Following the work of Guerini and Savo in [14], we derive a “gap” estimate
between the first eigenvalues of consecutive p-values of the magnetic Hodge
Laplacians on �p.M;C/ for isometrically immersed manifolds .M n; g/ in
Euclidean space RnCm (see Theorem 6.3).

2. Review of the magnetic Laplacian for functions

Before we introduce the magnetic Hodge Laplacian in the next section, we first recall
some results for the classical magnetic Laplacian on functions. Let .M n; g/ be a Rie-
mannian manifold and ˛ 2 �1.M/. The magnetic Laplacian �˛ acting on complex-
valued smooth functions defined by formula (1.1) has the property of gauge invari-
ance, that is �˛.eif / D eif�˛Cd

Mf for any smooth real-valued function f . When
M is compact (with or without boundary), the spectrum of �˛ (or with suitable
boundary conditions when @M ¤ ;) is discrete. Therefore, by the gauge invariance,
the spectrum of �˛ is equal to the spectrum of �˛Cd

Mf . Thus, when ˛ is exact,
the spectrum of �˛ reduces to that of the usual Laplace-Beltrami operator. In [8,
Proposition 3], it is proven that one can always assume that ˛ is a co-closed 1-form
(and tangential, i.e., �y˛ D 0, when M has a boundary) without changing the spec-
trum of�˛ . Moreover, by using the Hodge decomposition on compact manifolds, the
authors show in [6, Proposition 1] that one can further consider ˛ to be of the form

˛ D ıM C h;

where  is a 2-form on M (with �y D 0 when @M ¤ ;), and h is a harmonic
1-form onM , that is, dMhD ıMhD 0 (with �yhD 0 when @M ¤ ;), and again the
spectrum does not change. Here, we point out that the first eigenvalue �˛1.M/ of �˛

is not necessarily zero like for the usual Laplacian �M as shown in [29, Example 1].
This interesting property of the magnetic Laplacian was characterized by Shigekawa
(see [29, Proposition 3.1 and Theorem 4.2]) as follows.

Theorem 2.1 (Shigekawa). Let .M n; g/ be a closed Riemannian manifold and

BM D

°
˛� ´

dM �

i�
W � 2 C1.M;S1/

±
:
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Then the following statements are equivalent:

(1) ˛ 2 BM ;

(2) dM˛ D 0 and
R
c
˛ 2 2�Z for all closed curves c in M ;

(3) �˛1.M/ D 0.

Hence, when ˛ cannot be gauged away, meaning that ˛ does not belong to the
set BM , the first eigenvalue is necessarily positive. This gauge invariance can be
described as follows: if ˛� 2 BM for some � 2 C1.M;S1/, the Laplacians �˛ and
�˛C˛� are unitarily equivalent, that is

N��˛� D �˛C˛� :

Thus, �˛ and �˛C˛� have the same spectrum as stated before. Now, the diamagnetic
inequality compares the first eigenvalue of �˛ to the one for the Laplacian �M and
says that

�˛1.M/ � �1.M/;

with equality if and only if the magnetic potential ˛ can be gauged away. WhenM has
no boundary, the diamagnetic inequality provides no information since �1.M/ D 0.
However, when we consider manifolds with boundary and the magnetic Laplacian is
associated to the Dirichlet or Robin boundary conditions, the diamagnetic inequality
still holds and tells us that the first eigenvalue �˛1.M/ is always positive.

A simple estimate for the first eigenvalue of the magnetic Laplacian can be
deduced straightforwardly from the min-max principle. Indeed, when applying the
Rayleigh quotient to a constant function, we get, after choosing ıM˛ D 0, that

�˛1.M/ �

R
M
j˛j2d�g

Vol.M/
� k˛k21:

Several papers have been devoted to estimating the first eigenvalue of the magnetic
Laplacian, see, for example, [2, 5–12, 16, 19, 20]. Among these results, we quote two
of them [6, 11] on closed Riemannian manifolds.

The first result gives magnetic Lichnerowicz-type estimates for the first two eigen-
values.

Theorem 2.2 (see [11, Theorem 1.1]). Let .M n; g/ be a closed Riemannian manifold
of dimension n � 2 and ˛ 2 �1.M/. If

RicM � C > 0 and kdM˛k1 �
�
1C 2

r
n � 1

n

��1
C; (2.1)
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then we have

0 � �˛1.M/ � a�.C; kd
M˛k1; n/ and �˛2.M/ � aC.C; kd

M˛k1; n/; (2.2)

where

a˙.C;A; n/ D n �
.C � A/˙

q
.C � A/2 � 4.n�1

n
/A2

2.n � 1/
:

The technique used to obtain this result is an integral Bochner-type formula which
involves the magnetic Hessian that is associated to the magnetic covariant derivative
r˛ . A related result to Theorem 2.2 for the magnetic Laplacian with Robin bound-
ary conditions on compact Riemannian manifolds .M; g/ with smooth boundary was
proved in [15]. In the setup of the above theorem, it is natural to ask whether the esti-
mates are sharp for some ˛ that is not gauged away. For this, we employ the example
of the round sphere S3 where the magnetic field ˛ is collinear to the Killing vector
field that defines the Hopf fibration. We refer to Appendix A for more details on the
computation.

Example 2.3 (Unit sphere S3 with ˛ D tY2). Let .S3; g/ be the unit sphere in R4

with standard metric g of curvature 1. We use the notation introduced in Appendix A.
Let ˛ D tY2 where Y2 is the unit Killing vector field on S3. Using (A.4), we obtain
dM˛D 2t Y3 ^ Y4 where ¹Y2; Y3; Y4º is an orthonormal frame of TS3 and, therefore,
kdM˛k1 D 2t . Since RicM D C D 2, condition (2.1) is satisfied for jt j �

p
3

p
3C
p
8
D

tmax � 0:38, and for t 2 Œ0; tmax� we have, by (2.2),

�˛1.S
3/ �

3

2

h
.1 � t / �

r
.1 � t /2 �

8

3
t2
i

�
3

2

h
.1 � t /C

r
.1 � t /2 �

8

3
t2
i

� �˛2.S
3/:

On the other hand, we conclude from (A.5) that �˛1.S
3/D t2 and �˛2.S

3/D 3� 2t C

t2 for small t 2 Œ0; tmax�. The relations between these two smallest eigenvalues and
their estimates for small t > 0 are illustrated in Figure 1.

As we can see from Figure 1, sharpness of the upper estimate of �˛1.S
3/ is lost

(see the discussion after Lemma 4.1).
The second result was given in [6] in the general setting of magnetic Schrödinger

operators�˛ C q with Neumann boundary conditions. For simplicity, we formulate it
in the special case of a closed Riemannian manifold .M n; g/ with vanishing potential
q D 0. We will return to this estimate later in Section 4.2.
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Figure 1. Eigenvalues �˛
1
.S3/ and �˛

2
.S3/ in red and upper and lower bounds in blue, as

functions over t 2 Œ0; tmax�.

Theorem 2.4 ([6, Theorem 2]). Let .M n; g/ be a closed Riemannian manifold and
let ˛ 2 �1.M/ be of the form ˛ D ıM C h with  2 �2.M/ and h a harmonic
1-form. Then,

�˛1.M/ �
1

Vol.M/

�
d.h;LZ/

2
C
kdM˛k22
�001;1.M/

�
;

where �001;1.M/ is the first eigenvalue of the Hodge Laplacian �M on co-exact
1-forms, LZ is the lattice of integer harmonic 1-forms in �1.M/, and

d.h;LZ/
2
D inf
�2LZ

kh � �k22:

In order to check the sharpness of this inequality, we consider again the case of
the round sphere with the magnetic field given by the Killing vector field.

Example 2.5 (Unit sphere S3 with ˛ D tY2). Let .S3; g/ be the unit round sphere
in R4 with standard metric g of curvature 1 and let ˛ D tY2. Since H 1.S3/ D 0

and ıM˛ D 0, ˛ is co-exact and therefore of the form ıM for some  2 �2.M/.
Moreover, we have from [13, p. 37] and [23] that �001;1.S

3/ D 4. Thus, Theorem 2.4
yields

�˛1.S
3/ �

1

4Vol.S3/

Z
S3

jdM˛j2d�g D t
2;

that is, the upper estimate of the first magnetic eigenvalue is sharp for this case.
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Finally, as we mention in the introduction, examples of closed Riemannian man-
ifolds .M n; g/ with non-trivial magnetic potential ˛ 2 �1.M/ (that is, magnetic
potential which cannot be gauged away) for which the full spectrum of the magnetic
Laplacian�˛ can be explicitly given, are very scarce (see, for example, [7,8] for such
computations).

3. The magnetic Hodge Laplacian for differential forms

In this section, we introduce the magnetic Hodge Laplacian for differential forms,
prove a magnetic Bochner formula, and discuss its gauge invariance. Henceforth,
.M n; g/ will denote an oriented n-dimensional Riemannian manifold and �p.M/

and �p.M;C/ will denote the spaces of real and complex differential p-forms for
0 � p � n. The spaces of real and complex vector fields onM are denoted by X.M/

and XC.M/. To simplify notation, we will often identify real and complex vector
fields with real and complex 1-forms via the (complex-linear) musical isomorphisms.
That is,�1.M;C/!XC.M/I ! 7! !] given by !.X/D hX;!]i, where h�; �i stands
for the Hermitian scalar product extended from the Riemannian metric g to XC.M/.

3.1. The magnetic Hodge Laplacian

Fix a smooth 1-form ˛ 2 �1.M/ (a magnetic potential) and consider the magnetic
differential on �p.M;C/, given by

d˛ ´ dM C i˛ ^ :

It is not difficult to check that the L2-adjoint of d˛ acting on complex differential
forms (when M is without boundary) with respect to the Hermitian inner productZ

M

h!; �i d�g D

Z
M

�.! ^ �N�/ d�g

is given by
ı˛ ´ ıM � i˛]y;

where ıM D .�1/n.pC1/C1 � dM� is the formal adjoint of dM on p-forms (both
extended complex linearly to complex differential forms) and the Hodge star operator
is extended to a complex linear operator �W�p.M;C/! �n�p.M;C/. Recall here
that the interior product “y” is the pointwise adjoint of the wedge product “^”. Both
d˛ and ı˛ are the differential and co-differential associated to the magnetic connec-
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tion on differential forms r˛X ´ r
M
X C i˛.X/ on �p.M;C/. That means we have

d˛ D

nX
jD1

e�j ^ r
˛
ej

and ı˛ D �

nX
jD1

ej yr˛ej ; (3.1)

where ¹e1; : : : ; enº is a local orthonormal frame of TM . Now, we define the magnetic
Hodge Laplacian acting on �p.M;C/ as follows:

�˛ ´ d˛ı˛ C ı˛d˛:

We first have the following observation.

Lemma 3.1. On differential p-forms, we have

�d˛ D .�1/pC1ı˛ � and � ı˛ D .�1/pd˛ � :

Proof. The proof is straightforward from the fact that �dM D .�1/pC1ıM� and
�.˛^/ D .�1/p˛]y� on p-forms. Also, we have that �ıM D .�1/pdM� as well
as �.˛]y/ D .�1/pC1˛ ^ �.

The following is an immediate consequence of Lemma 3.1 above.

Corollary 3.2. The magnetic Hodge Laplacian �˛ commutes with the Hodge star
operator.

Proof. Indeed, on p-forms, we have

�˛� D .d˛ı˛ C ı˛d˛/�

D .�1/pC1d˛ � d˛ C .�1/pı˛ � ı˛

D �.ı˛d˛ C d˛ı˛/ D ��˛:

The magnetic Laplacian �˛ has the same principal symbol as the Hodge Lapla-
cian �M (see equation (3.10) in the next section), since it differs by lower order
terms. Therefore, it is an elliptic, essentially self-adjoint operator acting on smooth
complex forms on a closed oriented Riemannian manifold or acting on smooth com-
plex forms with Dirichlet boundary condition on an oriented Riemannian manifold
with boundary (see Section 5.1 below). Therefore, �˛ has a discrete spectrum con-
sisting of nonnegative eigenvalues .�˛j;p.M//j2N , denoted in ascending order with
multiplicities. Moreover, as for the usual Hodge Laplacian, its spectrum on p-forms
is the same as the one on .n � p/-forms and the first eigenvalue is characterized by

�˛1;p.M/ D inf
²R

M
.jd˛!j2 C jı˛!j2/d�gR

M
j!j2d�g

³
; (3.2)

where ! runs over all smooth p-forms with !j@M D 0, if @M ¤ ;.
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We also note that the differential d˛ does not satisfy the crucial property d˛ ı
d˛ D 0 to introduce cohomology groups. In fact, we have

.d˛/2 D idM˛^ (3.3)

where dM˛ 2 �2.M/ is the magnetic field. We could, however, still define magnetic
Betti numbers via

b˛j .M/ D dim Ker.�˛j�j .M;C//:

Corollary 3.2 implies that b˛j .M/ D b˛n�j .M/. Moreover, b˛0 .M/ D b˛n .M/ D 0 for
any magnetic potential ˛ that cannot be gauged away, that is ˛ …BM , by the diamag-
netic inequality. In Theorem 3.12, we investigate the existence of closed Riemannian
manifolds .M n; g/with a magnetic potential ˛ that cannot be gauged away, for which
some of the corresponding magnetic Betti numbers b˛

k
.M/, 1 � k � n � 1, are non-

zero.

3.2. A magnetic Bochner formula

Recall that the Hodge Laplacian �M ´ dM ıM C ıMdM is related to the Bochner
Laplacian on M via a curvature term by the Bochner–Weitzenböck formula. Namely,
we have (see, e.g., [24, Theorem 7.4.5] or [31, p. 14])

�M D r�r CBŒp�; (3.4)

where BŒp�, called the Bochner operator, is a symmetric endomorphism on �p.M/

given by

BŒp�
D

nX
j;kD1

e�k ^ ej yRM .ej ; ek/:

Here RM is the curvature operator associated to the Levi-Civita connection rM

which is given by
RM .X; Y / D ŒrMX ;rMY � � r

M
ŒX;Y �

for all X; Y 2 X.M/ and ¹e1; : : : ; enº is a local orthonormal frame of TM . The
Bochner Laplacian r�r is given by

r
�
r D �

nX
jD1

r
M
ej
r
M
ej
C

nX
jD1

r
M

rMej
ej
:

In the following, we derive a similar magnetic Bochner–Weitzenböck formula
for �˛ , which will provide a relation between the Hodge Laplacians �˛ and �M .
For this, we recall the following definition. Given a Euclidean vector space V of
dimension n and an endomorphismAWV ! V , there exists a canonical extensionAŒp�
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of A on the set of differential p-forms (p � 1) given by AŒp�Wƒp.V �/! ƒp.V �/

via

.AŒp�!/.v1; : : : ; vp/ D

pX
jD1

!.v1; : : : ; Avj ; : : : ; vp/; (3.5)

for v1; : : : ; vp 2 V . By convention, we take AŒ0� D 0. One can easily show from the
definition that the endomorphism AŒp� can be written in terms of A as

AŒp� D

nX
jD1

e�j ^ .A.ej /y/; (3.6)

where ¹e1; : : : ; enº is an orthonormal frame of V . If A is a symmetric (resp. skew-
symmetric) endomorphism on V , then so isAŒp� onƒp.V �/. In this case, if we denote
the eigenvalues of A by �1 � � � � � �n, then we have the following estimates. For any
! 2 ƒp.V �/

hAŒp�!;!i � �pj!j
2 and hAŒp�!;!i � .�n � �n�p/j!j

2
� pkAk � j!j2; (3.7)

where �p ´ �1 C � � � C �p are called the p-eigenvalues of AŒp� and kAk is the oper-
ator norm of A. In order to state the magnetic Bochner–Weitzenböck formula, we
introduce the following magnetic Bochner operator on �p.M;C/:

BŒp�;˛
´

nX
j;kD1

e�k ^ .ej yR˛.ej ; ek//;

where as before ¹eiºiD1;:::;n is a local orthonormal frame of TM . Here R˛ is the
curvature operator associated to the magnetic covariant derivative r˛ , that is

R˛.X; Y /Z D r˛Xr
˛
YZ � r

˛
Yr

˛
XZ � r

˛
ŒX;Y �Z

for X; Y; Z 2 XC.M/. Now, we express the magnetic Bochner operator in terms of
the usual one by the following lemma.

Lemma 3.3. On the set of complex differential p-forms, the magnetic Bochner oper-
ator BŒp�;˛ is equal to

BŒp�;˛
D BŒp�

� iAŒp�;˛;

where AŒp�;˛ is the canonical extension to complex p-forms of the skew-symmetric
endomorphism A˛ on TM given by A˛.X/ D .XydM˛/] for any vector field X
on M .

Proof. An easy computation shows that, for any X; Y 2 X.M/ and ! 2 �p.M;C/;

R˛.X; Y /! D RM .X; Y /! C i.dM˛/.X; Y /!:
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The proof can then be deduced from the definition of BŒp�;˛ and the fact that A˛ is
skew-symmetric.

We make the following observation. Using the p-form identity

�.X [^/ D .�1/pXy�

valid for any vector field X , one can easily show that BŒp� D .�1/p.n�p/ �BŒn�p��

which gives that hBŒp��; �i D hBŒn�p� � �; ��i where � is the Hodge star operator on
M and h�; �i is the pointwise Hermitian product on �p.M;C/. In the same way, and
since the endomorphism A˛ is skew-symmetric, one can also show that

AŒp�;˛ D .�1/p.n�p/ � AŒn�p�;˛ � :

Therefore, we deduce that BŒp�;˛ D .�1/p.n�p/ �BŒn�p�;˛� and, thus,

hBŒp�;˛
�; �i D hBŒn�p�;˛

� �;��i (3.8)

on complex p-forms. Notice here the fact that iAŒp�;˛ is a symmetric endomorphism
on �p.M;C/. Now, we formulate the magnetic Bochner–Weitzenböck formula.

Theorem 3.4 (Magnetic Bochner–Weitzenböck formula). Let .M n; g/ be a Rieman-
nian manifold and ˛ 2 �1.M/. Then we have

�˛ D .r˛/�r˛ CBŒp�;˛; (3.9)

where .r˛/�r˛ D �
Pn
jD1 r

˛
ej
r˛ej
C
Pn
jD1 r

˛

rMej
ej

. Moreover, we have

�˛ D �M � iAŒp�;˛ C i.ıM˛/ � 2irM˛ C j˛j
2: (3.10)

Proof. The proof follows the same computations as for the Hodge Laplacian�M . For
this, we use the expressions of d˛ and ı˛ in (3.1) on an orthonormal frame ¹ej ºnjD1
on TM chosen in a way that rM ej D 0 at some point x 2M . By the fact that, for all
X;Y 2XC.M/, we have r˛X .Y ^ �/ D .r

M
X Y /^ � C Y ^r˛X �, which can be proven

by a straightforward computation (the same relation holds for the interior product),
we can write at x 2M :

�˛ D d˛ı˛ C ı˛d˛

D �

nX
j;kD1

e�k ^ r
˛
ek
.ej yr˛ej / �

nX
j;kD1

ej yr˛ej .e
�
k ^ r

˛
ek
/

D �

nX
j;kD1

e�k ^ .ej yr˛ekr
˛
ej
/ �

nX
j;kD1

ej y.e�k ^ r
˛
ej
r
˛
ek
/
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D �

nX
j;kD1

e�k ^ .ej yr˛ekr
˛
ej
/ �

nX
jD1

r
˛
ej
r
˛
ej
C

nX
j;kD1

e�k ^ .ej yr˛ejr
˛
ek
/

D �

nX
jD1

r
˛
ej
r
˛
ej
C

nX
j;kD1

e�k ^ .ej yR˛.ej ; ek//;

where in the fourth equality we used the relation

Xy.ˇ ^ �/ D .Xyˇ/ ^ � C .�1/degˇˇ ^ .Xy�/;

for any differential form ˇ. This shows that (3.9) holds. To obtain (3.10), we combine
Lemma 3.3 with the Bochner–Weitzenböck formula (3.4) and the fact that at x 2M

.r˛/�r˛ D �

nX
jD1

r
˛
ej
r
˛
ej

D �

nX
jD1

r
M
ej
.rMej C i˛.ej // � i

nX
jD1

˛.ej /.r
M
ej
C i˛.ej //

D r
�
r C iıM˛ � 2irM˛ C j˛j

2:

Remark 3.5. Formula (3.10) is a generalization of the formula for the magnetic
Laplacian for functions, given by

�˛f D ı˛d˛f D �Mf C i.ıM˛/f � 2i˛.f /C j˛j2f;

since AŒ0�;˛ D 0.

Now, we will consider a particular case for the magnetic field ˛. We will assume
that it is a Killing 1-form, that is its corresponding vector field ˛] by the musical iso-
morphism is a Killing vector field. In this case, the standard Hodge Laplacian �M

commutes with the Lie derivative L˛ since it commutes with all isometries. Indeed,
we will show that, when ˛ is of constant norm, the exterior differential dM and codif-
ferential ıM both commute with the magnetic Laplacian. Notice here that, in general,
d˛ and ı˛ do not commute with �˛ as a consequence of (3.3) and even when ˛] is
Killing. We now show that equation (3.10) has the simpler expression (3.11) in this
case. We also recall that for simplicity ˛ and ˛] are identified throughout the paper.

Proposition 3.6. Let .M n; g/ be a Riemannian manifold and let ˛ be a Killing
1-form, then

�˛ D �M � 2iL˛ C j˛j
2; (3.11)

where L˛ is the Lie derivative in the direction of ˛. In particular, L˛�
˛ D �˛L˛ .
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Moreover, if the norm of ˛ is constant, we have that �˛dM D dM�˛ and �˛ıM D
ıM�˛ and, therefore, the magnetic Laplacian preserves the set of exact and co-exact
forms.

Proof. The fact that ˛ is Killing gives A˛.X/ D XydM˛ D 2rMX ˛ for any vector
field X 2 TM . Therefore, we get by (3.6) that

AŒp�;˛ D

nX
jD1

e�j ^ A
˛.ej /y D 2

nX
jD1

e�j ^ r
M
ej
˛y D 2T Œp�;˛;

where T Œp�;X is the canonical extension of the endomorphism T X D rMX , for
any X , given by the expression in (3.6). Now, the identity LX D r

M
X C T

Œp�;X valid
on p-forms for any vector field X on TM [27, Lemma 2.1] allows us to deduce that

2L˛ D 2r
M
˛ C A

Œp�;˛: (3.12)

Hence, equation (3.10) and the fact that ıM˛ D 0 since ˛ is Killing gives the desired
identity (3.11). In order to prove that L˛ commutes with �˛ , we first use ˛.j˛j2/ D
2g.rM˛ ˛; ˛/ D 0 which is a consequence of the fact that ˛ is Killing. Now, we com-
pute, for any p-form !,

L˛.j˛j
2
� !/ D ˛.j˛j2/ � ! C j˛j2 �L˛! D j˛j

2
�L˛!:

Thus, by the fact that L˛ commutes with the Laplacian �M , we get that L˛�
˛ D

�˛L˛ . Now, we assume j˛j is constant. It follows from Cartan’s formula LX! D

XydM! C dM .Xy!/ that LX commutes with dM for any vector field X . Since
dM commutes with �M and with L˛ as well as with multiplication by the constant
j˛j2, we deduce that dM commutes with �˛ . That the codifferential ıM commutes
with �˛ comes from the fact that ıM commutes with �M and with L˛; which is
a consequence of ıM D ˙ � dM� and L˛� D �L˛ by (3.12). (Recall here that
AŒp�;˛� D �AŒn�p�;˛). This finishes the proof.

Remark 3.7. Relation (3.12) shows that for any complex differential forms ! and !0

on M , the following relation

hL˛!;!
0
i C h!;L˛!

0
i D ˛.h!;!0i/; (3.13)

holds pointwise when ˛ is a Killing vector field (not necessarily of constant norm),
since AŒp�;˛ is skew-symmetric.

When the magnetic potential ˛ is Killing of constant norm on .M n; g/, we have
seen that the magnetic Laplacian �˛ preserves the set of exact and co-exact forms
on M . In the following, we will assume M to be compact and will let �˛1;p.M/
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be the first non-negative eigenvalue of �˛ on differential p-forms and �˛1;p.M/0

(resp. �˛1;p.M/00) be the first non-negative eigenvalue restricted to exact (resp. co-
exact) p-forms. As in the standard case [26], we can prove by Hodge duality that
�˛1;p.M/00D �˛1;n�p.M/0 and that �˛1;p.M/�min.�˛1;p.M/0;�˛1;p.M/00/. Recall here
that the magnetic Laplacian commutes with the Hodge star operator. However, we will
see in the next proposition, that the relation �˛1;p.M/ D min.�˛1;p.M/0; �˛1;p.M/00/

that usually holds for the Laplacian �M is not always true for �˛ .
For the next proposition, we need the following well-known result, which we

present for completeness.

Lemma 3.8. Let .M n; g/ be a compact manifold and let X be a Killing vector field
on M . For any harmonic form ! 2 �.M/ we have

LX! D 0:

Proof. Let ! 2 �.M/ be harmonic. Using Cartan’s formula, we see that LX! is
exact. Moreover, since the Lie derivative of a Killing vector field commutes both with
dM and ıM , the Lie derivative LX! is both exact and harmonic. Therefore, by Hodge
decomposition, LX! D 0.

Proposition 3.9. Let .M n; g/ be a compact Riemannian manifold and let ˛ be a
Killing 1-form. The first non-negative eigenvalue �˛1;p.M/ satisfies �˛1;p.M/ D j˛j2

or �˛1;p.M/ D min.�˛1;p.M/0; �˛1;p.M/00/ if ˛ has constant norm. If Hp.M/ ¤ 0,
then we get the estimate

�˛1;p.M/ � k˛k21:

Proof. Let ! be a complex p-eigenform of the magnetic Hodge Laplacian associated
to the first eigenvalue �˛1;p.M/. By the Hodge decomposition, we write

! D dM!0 C ı
M!1 C !2;

where !0 2�p�1.M;C/;!1 2�pC1.M;C/ and !2 2�p.M;C/ is harmonic. From
the equation�˛! D �˛1;p.M/!, by uniqueness of the decomposition and the fact that
both dM and ıM commute with �˛ , we obtain the relation �˛!2 D �˛1;p.M/!2.
Now, if !2 does not vanish, then by the fact that ˛ is Killing and !2 is harmonic, we
have by Lemma 3.8 that L˛!2 D 0. Thus, by equation (3.11), we get that �˛!2 D
j˛j2!2 and, therefore, �˛1;p.M/ D j˛j2. If !2 vanishes, then we have ! D dM!0 C
ıM!1 and, hence, min.�˛1;p.M/0; �˛1;p.M/00/ � �˛1;p.M/. When Hp.M/ ¤ 0 then
there is a non-vanishing p-harmonic form ! onM and thus, as before,�˛! D j˛j2!.
Thus, by the min-max principle we deduce the required estimate. This finishes the
proof.



Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms 1311

Example 3.10. As in the previous examples, consider the manifoldM DS3 equipped
with the standard metric of curvature 1. Let Y2 be the unit Killing vector field as in
Appendix B. It follows that the 1-forms dMu, dMv and ˛ D tY2 are all simultaneous
eigenforms of the operators �˛ such that

�˛dMu D .3C 2t C t2/dMu;

�˛dMv D .3 � 2t C t2/dMv;

�˛˛ D .4C t2/˛:

Moreover, dMu;dMv are both exact eigenforms associated to the smallest eigenvalue
�01;1.M/ D 3 and the one-form ˛ is a co-exact eigenform associated to the smallest
eigenvalue �001;1.M/ D 4 (see [23]). Therefore, we have for small t > 0,

�˛1;1.M/ D min.�˛1;1.M/0; �˛1;1.M/00/ D 3 � 2t C t2;

since H 1.M/ D 0. On the other hand, we get by equation (A.5) that for small t > 0,
�˛1;0.M/ D t2 D j˛j2: However, we have that

min.�˛1;0.M/0; �˛1;0.M/00/ D �˛1;0.M/00 D 3 � 2t C t2:

3.3. Gauge invariance of the magnetic Hodge Laplacian

Another consequence of the magnetic Bochner–Weitzenböck formula (3.10) is the
following result.

Corollary 3.11. Let .M n; g/ be a Riemannian manifold and let ˛ be a differential
1-form on M . For any ˛� D dM �

i�
2 BM for some � 2 C1.M; S1/, the magnetic

Laplacians �˛ and �˛C˛� on p-forms are unitarily equivalent, meaning that

N��˛� D �˛C˛� :

In particular, �˛ and �˛C˛� have the same spectrum on a closed oriented Rieman-
nian manifold.

Proof. The proof relies mainly on the following identity. For any f 2 C1.M;C/ and
! 2 �p.M;C/, we have

�M .f!/ D f�M! C .�Mf /! � 2rM
dMf

!:

Hence, for f D � 2 C1.M;S1/, we use (3.10) to compute

N��˛.�!/ D N�.�M .�!/ � iAŒp�;˛.�!/C i.ıM˛/.�!/ � 2irM˛ .�!/C j˛j
2�!/

D�M! C N�.�M �/! � 2 N�rM
dM �

! � iAŒp�;˛! C i.ıM˛/!

� 2i N�˛.�/! � 2irM˛ ! C j˛j
2!: (3.14)
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Taking the divergence of dM � D i�˛� , we get that

�M � D ıM .i�˛� / D i�ı
M˛� C � j˛� j

2:

Hence, equation (3.14) reduces to

N��˛.�!/ D�M! C i.ıM˛� /! C j˛� j
2! � 2irM˛�! � iA

Œp�;˛! C i.ıM˛/!

C 2h˛; ˛� i! � 2ir
M
˛ ! C j˛j

2!

D�M! � iAŒp�;˛C˛�! C iıM .˛� C ˛/! � 2ir
M
˛C˛�

! C j˛ C ˛� j
2!

D�˛C˛�!:

In the second equality, we used the fact that A˛ D A˛C˛� since ˛� is a closed form.
This allows us to deduce the result.

The gauge invariance of the magnetic Laplacian allows us to state a Shikegawa-
type result for differential forms.

Theorem 3.12. Let .M n; g/ be a compact Riemannian manifold and let ˛ be a one-
form on M . Assume that M carries a non-zero parallel p-form !0 on M . Then we
have the following:

(a) if ˛ 2 BM , then �˛1;p.M/ D 0 and there exists an eigenform ! of �˛ asso-
ciated with the eigenvalue �˛1;p.M/ such that f ´ h!; !0i is nowhere van-
ishing;

(b) conversely, assume that ˛ is Killing. If �˛1;p.M/D 0 and there exists an eigen-
form ! of�˛ associated with the eigenvalue �˛1;p.M/ such that f ´h!;!0i
is not vanishing, then ˛ 2 BM and, in this case, it is a parallel form.

Proof. We first prove (a). Since ˛D dM �
i�
2BM for some � 2C1.M;S1/, we deduce

from Corollary 3.11 that the magnetic Laplacian has the same spectrum as the Hodge
Laplacian �M . Hence, the first eigenvalue �˛1;p.M/ is equal to 0 due to the existence
of a parallel form !0 which gives that dM!0 D ıM!0 D 0. Moreover, one can easily
check that the form ! ´ N�!0 satisfies

d˛! D dM . N�!0/C i˛ ^ N�!0 D d
M
N� ^ !0 C i N�˛ ^ !0

D �i N�˛ ^ !0 C i N�˛ ^ !0 D 0:

In the same way, we prove that ı˛! D 0. Therefore, we have �˛! D 0. Hence, the
function f D h!; !0i D N� j!0j2 is nowhere zero since N� 2 S1 and the parallel form
!0 is of constant norm.

Now, we prove (b). For this, we assume that ˛ is Killing and we compute the
Laplacian of the function f . We choose a local orthonormal frame ¹eiº of TM such
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that rM ei jx D 0 at some point x. Since the form !0 is parallel, we write

�Mf .x/ D �

nX
iD1

.ei .ei .f ///.x/ D �

nX
iD1

hr
M
ei
r
M
ei
!;!0ix D hr

�
r!;!0ix

(3.4)
D h�M! �BŒp�!;!0ix

(3.11)
D h�˛! C 2iL˛! � j˛j

2!;!0ix � h!;B
Œp�!0ix

(3.13)
D �2ih!;L˛!0ix C 2i˛.h!;!0ix/ � j˛.x/j

2f .x/

D 2i˛.f /.x/ � j˛.x/j2f .x/:

In this computation, we used the fact that BŒp�!0 D 0 since !0 is parallel, and also
that L˛!0 D 0 by Lemma 3.8. Therefore, equation (1.2) and div ˛] D 0 (since ˛
is Killing) allows us to deduce that �˛f D 0 and, therefore �˛1.M/ D 0. Now, the
classical Shikegawa’s result (Theorem 2.1) allows us to get that ˛ 2BM which is also
equivalent to the fact that dM˛ D 0 and

R
c
˛ 2 2�Z for all closed curves c in M .

Now, the condition dM˛ D 0 means that rM˛ is a symmetric two-tensor which is
also skew-symmetric by the fact that ˛ is Killing. Hence, the form ˛ is parallel.

Remark 3.13. We know from Lemma 3.8 that, on a compact manifold .M n; g/, for
any harmonic form ! and a Killing one-form ˛, we have that L˛! D 0. However,
there are�˛-harmonic forms for which this fact no longer holds. Indeed, assume that
M carries a Killing one-form ˛ which is also in BM , that is ˛ D dM �

i�
(for instance,

such forms exist on the flat torus) and hence parallel by the same arguments as in the
above proof. Assume also that a non-zero parallel p-form !0 exists on M . We have
seen from the proof of Theorem 3.12 that ! D N�!0 is a �˛-harmonic form. Now, we
compute

L˛! D ˛. N�/!0 C N�L˛!0 D �i N� j˛j
2!0 ¤ 0;

since ˛ is parallel and, hence, is of constant norm.

We illustrate Theorem 3.12 with two examples.

Examples 3.14. (a) The flat torus Tn is trivialized by parallel p-forms for any p.
Hence, one can always find, for any non-trivial differential form !, a parallel form !0

such that f D h!;!0i is not vanishing. Let ˛ be any Killing one-form, we get

�˛1;p.T
n/ D 0 () ˛ 2 BTn : (3.15)

(b) Let us consider the product manifold M D S1 � S3 with the product metric.
For A 2 R, we let ˛ D A!0 be the one-form on M , where !0 ´ d� is the parallel
unit one-form on S1. It is not difficult to check that ˛ 2 BS1�S3 if and only if A 2 Z.
We show

�˛1;1.S
1
� S3/ D 0 () A 2 Z:



M. Egidi, K. Gittins, G. Habib, and N. Peyerimhoff 1314

When A 2 Z, the spectrum of �˛ is the same as the spectrum of �M , and hence
�˛1;1.M/ D 0 due to the existence of a parallel one-form. For the converse, assume
that �˛1;1.S

1 � S3/D 0 and that A …Z. Hence, ˛ …BS1�S3 and by Theorem 3.12, we
obtain that f D h!; !0i D 0 for any eigenform ! associated to �˛1;1.M/. Therefore,
if we consider an orthonormal frame ¹�; e1; e2º on TS3 such that � is the unit Killing
vector field that defines the Hopf fibration with rS3

e1
� D e2 and rS3

e2
� D �e1 (since

the complex structure on S2 is given by J.X/ D rS3
X �), we write

! D f0� C f1e1 C f2e2

where f0; f1; f2 are smooth functions on S1 � S3. Now, the condition d˛! D 0

allows us to get that @fk
@�
D�iAfk for k D 0;1; 2, which gives that fk D gke�iA� with

functions gk which are constant on S1. However, the functions fk are only periodic
functions on S1 when A 2 Z, which is a contradiction.

4. Eigenvalue estimates for the magnetic Hodge Laplacian on closed
manifolds

In this section, we establish several eigenvalue estimates for the magnetic Hodge
Laplacian on a closed oriented Riemannian manifold .M n; g/. In particular, we show
that the diamagnetic inequality cannot hold in general.

4.1. A magnetic Gallot–Meyer estimate

The aim of this section is to derive a lower bound for the first eigenvalue of the mag-
netic Hodge Laplacian on p-forms that is analogous to that of Gallot–Meyer. We
begin with the following lemma similar to [13, Lemma 6.8], relating the magnetic
connection to the magnetic differential and co-differential.

Lemma 4.1. Let .M n; g/ be a Riemannian manifold and let ˛ be a magnetic poten-
tial. For any complex differential p-form ! with p � 1, we have

jr
˛!j2 �

1

p C 1
jd˛!j2 C

1

n � p C 1
jı˛!j2: (4.1)

Proof. The proof relies on defining the magnetic twistor form as in the usual case: for
any complex p-form ! and vector field X 2 XC.M/, we define

P ˛X! ´ r
˛
X! �

1

p C 1
Xyd˛! C

1

n � p C 1
X ^ ı˛!:
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Using equation (3.1), the norm of P ˛ is equal to

jP ˛!j2´

nX
jD1

jP ˛ej!j
2
D jr

˛!j2 �
1

p C 1
jd˛!j2 �

1

n � p C 1
jı˛!j2 � 0:

Here we use the fact that any complex p-form ˇ on M can be written as ˇ D
1
p

Pn
jD1 e

�
j ^ .ej yˇ/, and therefore,

Pn
jD1 jej yˇj2 D pjˇj2 and

Pn
jD1 je

�
j ^ ˇj

2 D

.n � p/jˇj2.

Applying inequality (4.1) to the 1-form !´ d˛f , where f is a smooth complex-
valued function, we get that

jHess˛ f j2 D jr˛d˛f j2 �
1

2
j.d˛/2f j2 C

1

n
j�˛f j2 �

1

n
j�˛f j2:

If the equality is attained, then .d˛/2f D 0which, by (3.3), is equivalent to dM˛D 0.
Therefore, if equality occurs in (2.2) (that is, if �˛1.M/D a�.C;A;n/), then from [11,
p. 1147], we should have equality in the above inequality which means that necessar-
ily dM˛ D 0. This explains why sharpness of the upper bound for �˛1.M/ in (2.2) is
lost. The next result now reads as a “magnetic version” of the Gallot–Meyer estimate
[13, Theorem 6.13].

Theorem 4.2. Let .M n; g/ be a closed oriented Riemannian manifold, and let ˛ be
a smooth 1-form on M . Assume that BŒp�;˛ � K for some K > 0 and p � 1. Then,
we have

�˛1;p.M/ �
C

C � 1
K;

where C D max.p C 1; n � p C 1/.

Proof. Let ! be a p-eigenform of �˛ associated to the first eigenvalue �˛1;p.M/. We
apply the magnetic Bochner formula to !, integrate it overM and use inequality (4.1)
to obtain

�˛1;p.M/

Z
M

j!j2d�g D

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g

�
1

C

Z
M

.jd˛!j2 C jı˛!j2/d�g CK

Z
M

j!j2d�g

D

��˛1;p.M/

C
CK

� Z
M

j!j2d�g ;

from which we deduce the desired inequality.
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Remark 4.3. In view of equality (3.8) and since the Hodge star operator commutes
with the magnetic Laplacian �˛ by Corollary 3.2, it is enough to consider p � n

2
in

the above estimate.

Example 4.4. In order to check whether the condition BŒp�;˛ � K required in the
previous theorem can be satisfied for someK > 0, we will employ the example of the
round sphere Sn for some odd n D 2mC 1 where the magnetic field ˛ is given by
˛ D t�, for t > 0, and � is the unit Killing vector field on Sn that defines the Hopf
fibration. Indeed, since on the round sphere BŒp� D p.n � p/, we get that BŒp�;˛ D

p.n � p/ � t iAŒp�;� . Now, as A�X D XydM � D 2rMX � for any vector field X , we
can always find an orthonormal basis of TSn such that the matrix of A� consists of
the eigenvalue 0 and block matrices of type

�
0 ˙2
�2 0

�
. The eigenvalue 0 corresponds to

the eigenvector � and the block matrices come from the fact that rM � is the complex
structure on �?. Hence, in this basis, the eigenvalues of the symmetric matrix iA� are
�2; 0; 2 with multiplicities n�1

2
; 1; n�1

2
respectively. An easy computation shows that

the p-eigenvalues of the matrix iA� are equal to

�p D

´
�2p if p � n�1

2
,

�2.n � p/ if p � nC1
2
:

Recall here that n is odd. Hence, the second inequality in (3.7) allows us to deduce
that

iAŒp�;� �

´
2p if p � n�1

2
,

2.n � p/ if p � nC1
2
:

Thus, for t > 0, we deduce that

BŒp�;˛
� K D

´
p.n � p � 2t/ if p � n�1

2
,

.p � 2t/.n � p/ if p � nC1
2
:

Clearly, for any parameter t � n�p
2

or p
2

, the number K is positive. Hence, Theo-
rem 4.2 yields the following estimates for the first eigenvalue of the magnetic Lapla-
cian �˛ on Sn with ˛ D t�,

�˛1;p.S
n/ �

´
n�pC1
n�p

p.n � p � 2t/ if p � n�1
2

,
pC1
p
.p � 2t/.n � p/ if p � nC1

2
:

4.2. A differential form analogue of a Colbois–El Soufi–Ilias–Savo estimate

In [6, Theorem 2], the authors give an upper bound for the first Neumann eigenvalue
of �˛ defined on complex functions in terms of some distance function of harmonic
1-forms to a specific lattice and the norm of the magnetic field dM˛ for Riemannian
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manifolds with boundary. In the following, we prove a similar result in the setting
of differential forms for closed oriented Riemannian manifolds .M n; g/. Before we
state the result, let us first introduce some relevant notation: we denote bymD b1.M/

the first Betti number and let c1; : : : ; cm be a basis of H1.M;Z/ and A1; : : : ; Am 2
H 1.M/ be its dual basis, that is

1

2�

Z
ci

Aj D ıij :

Let LZ be the lattice

LZ D ZA1 ˚ ZA2 ˚ � � � ˚ ZAm:

If H 1.M/ D 0 we set LZ D 0. Note that, by Hodge Theory, we can think of LZ as a
discrete subset of all real harmonic 1-forms. We now introduce the following distance
functions for any real 1-form ˇ 2 �1.M/:

d2.ˇ;LZ/ D

r
inf
�2LZ

kˇ � �k22;

d1.ˇ;LZ/ D
r

inf
�2LZ

kˇ � �k21:

When LZ D 0, the above distances reduce to kˇk2 or kˇk1. Now, we state the
main result of this section.

Theorem 4.5. Let .M n; g/ be a closed Riemannian manifold and ˛ 2 �1.M/ be
a magnetic potential of the form ˛ D ıM C h with h a harmonic 1-form and  
a 2-form. Then we have the following eigenvalue estimate for the magnetic Hodge
Laplacian on complex p-forms:

�˛1;p.M/ � �1;p.M/Cmin
°
d1.˛;LZ/

2;
k!0k

2
1

k!0k
2
2

d2.˛;LZ/
2
±
; (4.2)

with

d2.˛;LZ/
2
� d2.h;LZ/

2
C
kdM˛k22
�001;1.M/

; (4.3)

where !0 is a real eigenform of the Hodge Laplacian�M associated to the first eigen-
value �1;p.M/, and �001;1.M/ denotes the first eigenvalue of the Hodge Laplacian on
co-exact 1-forms.

Proof. The proof mainly follows the same lines as in [6]. Firstly, we choose !0 to be
a real p-form. Let � 2 LZ, that is

� D n1A1 C n2A2 C � � � C nmAm 2 LZ;
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for some integers n1; : : : ; nm 2 Z. We fix x0 2M and define

u.x/ D e
i
R x
x0
�
:

The right-hand side is well defined and independent of the path from x0 to x chosen,
since

R x
x0
� coincides for any pair of homotopic curves from x0 and x and agrees up

to a multiple of 2� for any arbitrary pair of paths from x0 to x as � 2 LZ. Then we
have dMu D iu�. Therefore, for the p-form ! ´ u!0, we compute

d˛! D dM! C i˛ ^ !

D .dMu/ ^ !0 C ud
M!0 C iu˛ ^ !0

D udM!0 C iu.�C ˛/ ^ !0:

Similarly,

ı˛! D ıM! � i˛]y!

D uıM!0 � .d
Mu/]y!0 � iu˛]y!0

D uıM!0 � iu.�C ˛/
]y!0:

Now, we take the norms and use orthogonality of its real and imaginary parts to obtain

jd˛!j2 D jdM!0j
2
C j.�C ˛/ ^ !0j

2;

and similarly
jı˛!j2 D jıM!0j

2
C j.�C ˛/]y!0j2:

Using the fact that jX ^ !j2 C jX]y!j2 D jX j2 � j!j2 for any vector field X , we add
the above two equations and choose !0 to be an eigenform of the Hodge Laplacian to
estimate

�˛1;p.M/ �

R
M
.jd˛!j2 C jı˛!j2/d�gR

M
j!j2d�g

D

R
M
.jdM!0j

2 C jıM!0j
2/d�gR

M
j!0j2d�g

C

R
M
j�C ˛j2j!0j

2d�gR
M
j!0j2d�g

D �1;p.M/C

R
M
j�C ˛j2j!0j

2d�gR
M
j!0j2d�g

with R
M
j�C ˛j2j!0j

2d�gR
M
j!0j2d�g

� min
°
k�C ˛k21;

k!0k
2
1

k!0k
2
2

k�C ˛k22

±
:

Since � 2 LZ was arbitrary, this proves inequality (4.2).
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For the proof of inequality (4.3), recall that we have ˛ D ıM C h. Since har-
monic 1-forms are L2-orthogonal to the forms in ıM .�2.M//, we have

d2.˛;LZ/
2
D inf
�2LZ

Z
M

j�C ˛j2d�g D

Z
M

jıM j2d�g C d2.h;LZ/
2:

Since ıM is co-exact, we haveR
M
jdM ıM j2d�gR
M
jıM j2d�g

� �001;1.M/;

and therefore,

d2.˛;LZ/
2
�

R
M
jdM ıM j2d�g

�001;1.M/
C d2.h;LZ/

2

D
kdM˛k22
�001;1.M/

C d2.h;LZ/
2:

This finishes the proof of the theorem.

Remark 4.6. The factor k!0k21=k!0k
2
2 requires knowledge of the p-eigenform of

the smallest eigenvalue. Under certain curvature conditions, it can be estimated from
above as explained in [22].

4.3. The diamagnetic inequality does not hold for the magnetic Hodge
Laplacian

A natural question is whether the diamagnetic inequality also holds for the magnetic
Hodge Laplacian. That is, whether the inequality

�˛1;p.M/ � �1;p.M/

holds or not for some p � 1. An example where the diamagnetic inequality holds is
the flat n-dimensional torus M D Tn. Clearly, the first eigenvalue �1;p.M/ D 0 for
any p due to the existence of a parallel p-form. Hence, the inequality �˛1;p.M/ �

0 D �1;p.M/ is satisfied. However, according to (3.15), the first eigenvalue �˛1;p.M/

can be positive. In this section, we provide an example to show that the diamagnetic
inequality does not hold in general. While this inequality is true for pD 0, we provide
a counterexample for p D 1. We also give an explicit characterization which deter-
mines whether this inequality holds for �t� where � is a Killing vector field. We start
with the following estimate.
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Theorem 4.7. Let .M n; g/ be a closed oriented Riemannian manifold and let
� 2 �1.M/. Then, for any t 2 R, we have, for ˛ D t�,

�˛1;p.M/ � �1;p.M/C
2t

k!k22
Im
�Z
M

hL�!;!id�g

�
C t2k�k21;

where ! 2�p.M;C/ is an eigenform of the Hodge Laplacian�M (linearly extended
to complex p-forms) associated with the eigenvalue �1;p.M/, and LX is the Lie
derivative in the direction of the vector field X 2 X.M/. In particular, if
Im.

R
M
hL�!; !id�g/ is negative for some complex eigenform !, then we get for

small positive t that
�˛1;p.M/ < �1;p.M/;

which means that the diamagnetic inequality does not hold.

Proof. Let ! be any p-form in �p.M;C/. By the characterization of the first eigen-
value, we have for ˛ D t�

�˛1;p.M/ �

R
M
.jd˛!j2 C jı˛!j2/d�gR

M
j!j2d�g

D

R
M
.jdM! C i t� ^ !j2 C jıM! � i t�y!j2/d�gR

M
j!j2d�g

:

Now, we computeZ
M

jdM! C i t� ^ !j2d�g

D kdM!k22 C 2t Re
�Z
M

hdM!; i� ^ !id�g

�
C t2k� ^ !k22

and Z
M

jıM! � i t�y!j2d�g

D kıM!k22 � 2t Re
�Z
M

hıM!; i�y!id�g
�
C t2k�y!k22:

Adding both equations and using the Cartan formula

LX! D XydM! C dM .Xy!/
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for any vector field X yieldsZ
M

.jdM! C i t� ^ !j2 C jıM! � i t�y!j2/d�g

D kdM!k22 C kı
M!k22

� 2t Re
�Z
M

.hi�ydM!;!i C hidM .�y!/; !i/d�g
�
C t2

Z
M

j�j2 � j!j2d�g

D kdM!k22 C kı
M!k22 C 2t Im

�Z
M

hL�!;!id�g

�
C t2

Z
M

j�j2 � j!j2d�g :

Choosing ! 2 �p.M;C/ to be an eigenform of �M with respect to the eigenvalue
�1;p.M/, we conclude that

�˛1;p.M/ � �1;p.M/C
2t

k!k22
Im
�Z
M

hL�!;!id�g

�
C t2k�k21:

This finishes the proof of the stated inequality. The last part is a direct consequence
of the fact that when Im.

R
M
hL�!; !id�g/ < 0 one can then always find positive

small enough t so that the right-hand side of the above inequality is strictly less than
�1;p.M/.

Remark 4.8. Note that the real and imaginary parts of a complex eigenform of �M

are both also eigenforms of �M associated with the same eigenvalue. Therefore, in
order to have

Im
�Z
M

hL�!;!id�g

�
¤ 0;

the eigenspaceEmin of�M associated with the smallest eigenvalue �1;p.M/ needs to
be at least 2-dimensional. Of course, this higher dimensionality does not necessarily
imply that this term is non-zero.

In order to interpret the condition Im.
R
M
hL�!; !id�g/ < 0 in Theorem 4.7, we

will consider the case when the vector field � is Killing.

Corollary 4.9. Let .M n; g/ be a closed oriented Riemannian manifold, � be a Killing
vector field on M and V ´ Ker.L� j�p.M;C// for some fixed p. If the eigenspace
Ker.�M � �1;p.M/ Id/ associated with the first eigenvalue �1;p.M/ is not included
in V , then the diamagnetic inequality does not hold. If Ker.�M � �1;p.M/ Id/ is
included in V , then the diamagnetic inequality holds (at least for magnetic potentials
t� with small jt j > 0).
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Proof. The Laplacian �M commutes with L� and, thus, the Lie derivative L� pre-
serves the eigenspace Ker.�M � �1;p.M/ Id/ which is of finite dimension. Rela-
tion (3.13) says that the formal L2-adjoint of L� is equal to �L� . Hence, the matrix
of L� is skew-symmetric and, thus, the eigenvalues are of the form 0 and˙iˇ. Since
by assumption the eigenspace Ker.�M � �1;p.M/ Id/ is not in the kernel of L� , we
can always find an eigenform ! of�M such that L�! D iˇ! for some ˇ with ˇ < 0
(if ˇ > 0, we choose its conjugate N!). Hence, for such an eigenform, we deduce that
Im.

R
M
hL�!;!id�g/ D ˇ

R
M
j!j2d�g < 0. Therefore, by Theorem 4.7 the diamag-

netic inequality does not hold for small positive t .
To prove the second statement, we have from relation (3.11) that �˛ D �M �

2itL� C t
2j�j2 holds for ˛ D t�. Also, we know from Proposition 3.6 that L��

˛ D

�˛L� . Therefore, the operator �˛ preserves the space V as well as its orthogonal
complement, by the fact that it is a self-adjoint operator. As �M is perturbed analyt-
ically, the family .�t�/t is an analytic family of self-adjoint operators with compact
resolvent and therefore the Hilbert basis of p-eigenforms of �M and their corre-
sponding eigenvalues can be extended analytically in the perturbation parameter t
to a Hilbert basis of p-eigenforms of �t� and their corresponding eigenvalues (see
[18, Theorem VII.3.9]). Since by assumption Ker.�M � �1;p.M/ Id/ � V and the
fact that the spectrum is discrete (with finite dimensional eigenspaces), we deduce
that �01;p.V / D �1;p.M/, where �01;p.V / denotes the lowest eigenvalue of �M on
p-forms, restricted to the invariant subspace V . Therefore, by choosing the analytic
perturbation !t of any basis element ! in the �M -eigenspace corresponding to the
eigenvalue �1;p.M/ and using the fact that !t is of unit L2-norm, we obtain the
estimateZ

M

h�t�!t ; !t id�g D

Z
M

h�M!t ; !t id�g C t
2

Z
M

j�j2j!t j
2d�g � �1;p.M/:

In the last inequality, we use the min-max principle for �M . This implies that

�
t�
1;p.V / � �1;p.M/ for all t .

The continuity of the maps t 7! �
t�
j;p.V / and t 7! �

t�
j;p.M/ along with the fact that

the eigenvalues are discrete and �01;p.V / D �1;p.M/ imply that �t�1;p.V / D �
t�
1;p.M/

for small t . Hence, we deduce that �t�1;p.M/ � �1;p.M/ for small jt j.

Below we consider the 3-dimensional round sphere and show that the diamagnetic
inequality is not satisfied for a suitable choice of magnetic potential. For more details
on the computation, we refer to Appendix A.
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Corollary 4.10. Let .M D S3; g/ be the 3-dimensional unit sphere (centered at the
origin) equipped with the canonical Riemannian metric g of curvature 1. Let � D Y2
be the unit Killing vector field on S3 as in Appendix A. Then, for small t > 0, we have,
for ˛ D tY2,

�˛1;1.M/ < �1;1.M/;

which means that the diamagnetic inequality does not hold in general for differential
1-forms.

Proof. By Corollary 4.9, we just need to find a 1-eigenform of the Laplacian
�M which is not in the kernel of L� . For this, we use the computations done in
Appendix B. Let .a; b/; .z1; z2/ 2 C2 n .0; 0/ and set

v.z1; z2/ D b Nz1 � a Nz2:

Recall that �Mv D 3v and that 3 is the smallest eigenvalue of �M associated to the
1-form ! ´ dMv. Hence, we compute

L�d
Mv D dM .L�v/ D �id

Mv:

In the last equality, we use the following consequence of the identity (A.2):

L�v D Y2.v/ D �iv:

Hence, the result follows from Corollary 4.9.

5. The magnetic Hodge Laplacian on manifolds with boundary

5.1. A magnetic Green’s formula for differential forms

Let .M n; g/ be a compact oriented Riemannian manifold with smooth boundary @M
and let ˛ 2 �1.M/. We denote by � the unit inward normal vector field to @M and
by �W @M !M the canonical injection. For any pair of complex differential forms !1
and !2, the magnetic Stokes formulaZ

M

hd˛!1; !2id�g D

Z
M

h!1; ı
˛!2id�g �

Z
@M

h��!1; �y!2id�g

holds. Here �� is the pull-back of differential forms on M to the boundary. Indeed, it
can be deduced from the usual Stokes formula and the expression of d˛ and ı˛ . As a
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consequence, we getZ
M

h�˛!1; !2id�g D

Z
M

hd˛ı˛!1 C ı
˛d˛!1; !2id�g

D

Z
M

hı˛!1; ı
˛!2id�g �

Z
@M

h��.ı˛!1/; �y!2id�g

C

Z
M

hd˛!1; d
˛!2id�g C

Z
@M

h�yd˛!1; ��!2id�g

D

Z
M

h!1; �
˛!2id�g C

Z
@M

h�y!1; ��.ı˛!2/id�g

�

Z
@M

h��.ı˛!1/; �y!2id�g �
Z
@M

h��!1; �yd˛!2id�g

C

Z
@M

h�yd˛!1; ��!2id�g : (5.1)

Hence, we deduce that the magnetic Laplacian on smooth differential forms with
Dirichlet boundary condition is self-adjoint and, being elliptic, it has a discrete spec-
trum that consists of real nonnegative eigenvalues.

5.2. A magnetic Reilly formula

In the following, we establish a Reilly formula for the magnetic Hodge Laplacian on
a compact oriented Riemannian manifold .M n; g/ with smooth boundary @M as in
[26, Theorem 3]. (Note that the dimension of the manifold in [26] is nC 1 in contrast
to our setting).

Theorem 5.1. Let .M n; g/ be a compact oriented Riemannian manifold with smooth
boundary @M and let ˛ 2 �1.M/. Then we have for any ! 2 �p.M;C/, p � 1, the
magnetic Reilly formulaZ
M

.jd˛!j2 C jı˛!j2/d�g D

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g

C 2Re
� Z
@M

hd˛
T

.�y!/; ��!id�g
�
C

Z
@M

hIIŒp���!; ��!id�g

C

Z
@M

hIIŒn�p���.�!/; ��.�!/id�g
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where ˛T D ��˛ 2�1.@M/ is the tangential component of ˛, IID�rM� is the Wein-
garten tensor of the boundary and d˛

T
´ d @M C i˛T^. Here IIŒp� is the extension

of II as defined in (3.5).

Proof. The proof follows the same lines as in [26, Theorem 3]. Indeed, we just need
to integrate the magnetic Bochner–Weitzenböck formula (3.9) over the manifold M .
From equation (5.1), we have thatZ
M

h�˛!;!id�g D

Z
M

jı˛!j2d�g �

Z
@M

h��.ı˛!/; �y!id�g C
Z
M

jd˛!j2d�g

C

Z
@M

h�yd˛!; ��!id�g :

Notice here that
R
M
h�˛!;!id�g is not necessarily real. Now, from [26, Lemma 18]

and the expression of ı˛ , one can easily deduce the following:

ı˛
T

.��!/ D ��.ı˛!/C �yr˛� ! C IIŒp�1�.�y!/ � .n � 1/H�y!;

where the mean curvature H ´ 1
n�1

tr.II/ of @M � M . Also, using the expression
of d˛ , we have that

d˛
T

.�y!/ D ��yd˛! C ��.r˛� !/ � IIŒp�.��!/:

Therefore, we arrive atZ
M

h�˛!;!id�g D

Z
M

.jd˛!j2 C jı˛!j2/d�g

�

Z
@M

hı˛
T

.��!/ � �yr˛� ! � IIŒp�1�.�y!/C .n � 1/H�y!; �y!id�g

C

Z
@M

h�d˛
T

.�y!/C ��.r˛� !/ � IIŒp�.��!/; ��!id�g

D

Z
M

.jd˛!j2 C jı˛!j2/d�g � 2Re
� Z
@M

hd˛
T

.�y!/; ��!id�g
�

C

Z
@M

hr
˛
� !;!id�g C

Z
@M

hIIŒp�1� �y!; �y!id�g

�

Z
@M

.n � 1/H j�y!j2d�g �
Z
@M

hIIŒp� ��!; ��!id�g :
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In the above equality, we use the fact that r˛� ! D �
�.r˛� !/C � ^ .�yr˛� !/ at any

point on the boundary. Now, since the identity

�@M IIŒp�1�C IIŒn�p� �@M D .n � 1/H�@M

holds on .p � 1/-forms on @M (see [26]), we apply it to the form �y! and take the
Hermitian product with �@M .�y!/. This leads to the following

hIIŒp�1� �y!; �y!i C hIIŒn�p� ��.�!/; ��.�!/i D .n � 1/H j�y!j2;

where we also use that ��.�!/ D ˙ �@M .�y!/. Hence, after taking the real part, the
above equation reduces to

Re
�Z
M

h�˛!;!id�g

�
D

Z
M

.jd˛!j2 C jı˛!j2/d�g � 2Re
� Z
@M

hd˛
T

.�y!/; ��!id�g
�

C Re
� Z
@M

hr
˛
� !;!id�g

�
�

Z
@M

hIIŒn�p� ��.�!/; ��.�!/id�g

�

Z
@M

hIIŒp� ��!; ��!id�g : (5.2)

Now, taking the Hermitian product of (3.9) with !, integrating overM and taking the
real part yields

Re
�Z
M

h�˛!;!id�g

�
D Re

�Z
M

h.r˛/�r˛!;!id�g

�
C

Z
M

hBŒp�;˛!;!id�g

D
1

2

Z
M

�M .j!j2/d�g C

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g

D
1

2

Z
@M

@

@�
.j!j2/d�g C

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g

D Re
� Z
@M

hr
˛
� !;!id�g

�
C

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g : (5.3)
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The second equality is obtained by taking the real part of the pointwise identity

h.r˛/�r˛!;!i D �

nX
iD1

ei .hr
˛
ei
!;!i/C jr˛!j2;

valid at any point such that rM ei D 0 and then using that Re.hr˛X!;!i/D
1
2
X.j!j2/

for any real vector field X . Comparing (5.2) with (5.3) yields the desired magnetic
Reilly formula.

Note that when p D 1, by taking ! D d˛f for any smooth complex-valued func-
tion f and using the fact that BŒ1�;˛ D RicM CiA˛ (here AŒ1�;˛ D �A˛ since A˛

is skew-symmetric), the Reilly formula in Theorem 5.1 reduces to the one stated in
[11, Corollary 4.2] for manifolds without boundary and to [15, Theorem 1.2] for man-
ifolds with boundary.

6. Eigenvalue estimates for the magnetic Hodge Laplacian on
manifolds with boundary

6.1. A magnetic Raulot–Savo estimate

In the following, we will estimate the first eigenvalue of the magnetic Laplacian on the
boundary of an oriented Riemannian manifold in terms of the so-called p-curvatures
as in [26, Theorem 1]. We mainly follow and refer to [26] for further details. We
consider a Riemannian manifold .M n; g/ with smooth boundary @M , and denote
by �1.x/ � � � � � �n�1.x/ the eigenvalues of the Weingarten tensor II D �rM� at
any point x 2 @M . Here, as before, � is the inward unit normal vector field to the
boundary. For any p 2 ¹1; : : : ; n� 1º, the p-curvatures �p.x/ are defined as �p.x/´
�1.x/C : : : �p.x/ and we set

�p.@M/ D inf
x2@M

.�p.x//:

From inequality (3.7), we have the following estimates

hIIŒp� !;!i � �p.@M/j!j2 and hIIŒp� !;!i � .�n�1.@M/ � �n�1�p.@M//j!j2;

(6.1)
for any ! 2 �p.@M/. Recall here that IIŒp� is the canonical extension of II to differ-
ential p-forms as in (3.5). Also, it is not difficult to check the following inequality
�p.x/

p
�

�q.x/

q
, for p � q, at any point x on the boundary with equality if and only if

�1.x/ D �2.x/ D � � � D �q.x/.
On manifolds with boundary, there are two notions of cohomology groups. We

briefly recall them. The absolute cohomology group Hp
A .M/ which is defined as the
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set of harmonic forms on M satisfying the absolute boundary conditions, that is for
any p 2 ¹1; : : : ; nº,

H
p
A .M/´ ¹! 2 �p.M;C/j dM! D ıM! D 0 on M and �y! D 0 on @M º:

By Poincaré duality, the absolute cohomology group Hp
A .M/ is isomorphic to the

relative cohomology group Hn�p
R .M/ which is defined as

H
p
R .M/´ ¹! 2 �p.M;C/j dM! D ıM! D 0 on M and ��! D 0 on @M º:

In [26, Theorem 4], the authors provide geometric obstructions to the vanishing of
these cohomologies using the Reilly formula. Namely, these conditions are related
to the Bochner operator on M and to the p-curvatures of the boundary. Following
the same idea, we will use the magnetic Reilly formula to deduce a similar vanishing
result on the absolute cohomology groups by requiring a condition on the magnetic
Bochner operator BŒp�;˛ . We have the following result.

Proposition 6.1. Let .M n;g/ be a compact Riemannian manifold with smooth bound-
ary and let ˛ be a differential 1-form on M . Assume that BŒp�;˛ � j˛j2 and that
�p.@M/ > 0. Then, Hp

A .M/ D 0.

Proof. Let ! 2 �p.M;C/ be an element in Hp
A .M/. Applying the magnetic Reilly

formula to ! and using the fact that jd˛!j2C jı˛!j2D j˛j2j!j2 yields the following:Z
M

j˛j2j!j2d�g D

Z
M

jr
˛!j2d�g C

Z
M

hBŒp�;˛!;!id�g C

Z
@M

hIIŒp���!; ��!id�g :

Now, the fact that jr˛!j2 � 0, the condition on BŒp�;˛ and inequality (6.1) allow us
to deduce thatZ

M

j˛j2j!j2d�g �

Z
M

j˛j2j!j2d�g C �p.@M/

Z
@M

j��!j2d�g

D

Z
M

j˛j2j!j2d�g C �p.@M/

Z
@M

j!j2d�g

�

Z
M

j˛j2j!j2d�g :

In the last inequality, we used that �p.@M/ > 0. Hence, we have equality in the above
inequalities and, thus, ! D 0 on @M . Now, since ! is harmonic, this leads to ! D 0
on M by [1].
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In the following, we will consider a magnetic 1-form ˛ on M such that its tan-
gential part ˛T D ��˛ is Killing of constant norm on @M . In this case, the exte-
rior differential d @M and codifferential ı@M commute with �˛

T
as we have seen in

Proposition 3.6. Hence, as in [26, Theorem 5], we will estimate the first eigenvalue
�˛

T

1;p.@M/0 of the magnetic Laplacian �˛
T

restricted to exact forms in terms of the
p-curvatures.

Theorem 6.2. Let .M n; g/ be a compact Riemannian manifold with smooth bound-
ary @M and let ˛ be a differential 1-form onM such that ˛T is a Killing form on @M
of constant norm. Assume that BŒp�;˛ � j˛j2 and that the p-curvatures �p.@M/ > 0

for some 1 � p � n
2

. Then the first eigenvalue �˛
T

1;p.@M/0 satisfies the inequality

�˛
T

1;p.@M/0 � �p.@M/�n�p.@M/:

Proof. Let ! D d @Mˇ be a complex exact p-eigenform of �˛
T

associated to the
eigenvalue �˛

T

1;p.@M/0. From [3, Lemma 3.1] (see also [28, Lemma 3.4.7]), there

exists a complex .p � 1/-form Ǒ such that ıMdM Ǒ D 0; ıM Ǒ D 0 onM and �� Ǒ D ˇ
on @M . The form Ǒ is unique up to a Dirichlet harmonic form, that is an element in
H
p�1
R .M/. Notice here that Ǒ cannot be a Dirichlet harmonic form since this would

lead to ! D 0. Let the p-form O! ´ dM Ǒ on M . Clearly, the form O! satisfies the
following system: ´

dM O! D ıM O! D 0 on M ,

�� O! D ! on @M:

Applying the magnetic Reilly formula in Theorem 5.1 to the form O! gives (after using
that jd˛ O!j2 C jı˛ O!j2 D j˛j2j O!j2, the condition on the magnetic Bochner operator
BŒp�;˛ and the fact that jr˛ O!j2 � 0) the following inequality:

0 � 2Re
� Z
@M

h�y O!; ı˛T !id�g
�
C �p.@M/

Z
@M

j!j2d�g

C �n�p.@M/

Z
@M

j�y O!j2d�g : (6.2)

We also use the first estimate given in (6.1) applied to both the p-form �� O! D ! and
the .n � p/-form ��.� O!/ D �@M .�y O!/. As p � n

2
, we have that �p.@M/

p
�

�n�p.@M/

n�p

and thus �n�p.@M/ > 0. Then, using the pointwise inequalityˇ̌̌
�y O! C

1

�n�p.@M/
ı˛
T

!
ˇ̌̌2
� 0;

we get the following estimate

2

�n�p.@M/
Re.h�y O!; ı˛T !i/C j�y O!j2 � �

1

�n�p.@M/2
jı˛

T

!j2:
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Therefore, by integrating this last inequality and multiplying it by �n�p.@M/, inequal-
ity (6.2) reduces to

1

�n�p.@M/

Z
@M

jı˛
T

!j2d�g � �p.@M/

Z
@M

j!j2d�g :

Finally, by using the fact that ! is a closed eigenform for the magnetic Laplacian
�˛

T
, we have

�˛
T

1;p.@M/0
Z
@M

j!j2d�g D

Z
@M

.jd˛
T

!j2 C jı˛
T

!j2/d�g

D

Z
@M

.j˛T ^ !j2 C jı˛
T

!j2/d�g

�

Z
@M

jı˛
T

!j2d�g

� �p.@M/�n�p.@M/

Z
@M

j!j2d�g ;

which is the desired estimate. This finishes the proof of the theorem.

6.2. A gap estimate between first eigenvalues

In the next result, we adapt the computations in [14, Theorem 2.3] to find a gap esti-
mate between the eigenvalues of different degrees �˛1;p.M/ and �˛1;p�1.M/. For this,
we will assume the manifold .M n; g/ is isometrically immersed into Euclidean space
RnCm and consider the magnetic Laplacian with Dirichlet boundary conditions, in
contrast to [14] where absolute boundary conditions are taken. Recall that for a given
normal vector field Z to M , the Weingarten tensor IIZ is the endomorphism of TM
given by

hIIZ.X/; Y i D hZ; II.X; Y /i

whereX;Y are tangent toM and II is the second fundamental form of the immersion.
As in (3.5), we will use the extension IIŒp�Z of the Weingarten tensor to p-differential
forms.

Theorem 6.3. Let .M n; g/ be a compact manifold with smooth boundary that is
isometrically immersed into the Euclidean space RnCm. Let ˛ be a smooth 1-form
on M . Then, for all 1 � p � n, the eigenvalues of the magnetic Dirichlet Laplacian
on M satisfy

�˛1;p.M/ � �˛1;p�1.M/C
1

p
sup
x2M

�min

�
BŒp�;˛.x/ �

mX
tD1

.IIŒp�
ft
/2.x/

�
;



Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms 1331

where �min.A/ is the smallest eigenvalue of a symmetric operator A and ¹f1; : : : ; fmº
is a local orthonormal basis of TM?.

Proof. The proof follows along the lines of [14]. For each j D 1; : : : ; nCm, the unit
parallel vector field @xj on RnCm splits as @xj D .@xj /

T C .@xj /
? with .@xj /

T D

dM .xj ı �/ where � is the isometric immersion. For any p-eigenform ! of �˛ asso-
ciated to �˛1;p.M/ with Dirichlet boundary condition, the .p � 1/-form .@xj /

T y!
clearly satisfies the Dirichlet boundary condition. Hence, by the characterization (3.2)
of the first eigenvalue applied to .@xj /

T y!, we have for each j ,

�˛1;p�1.M/

Z
M

j.@xj /
T y!j2d�g �

Z
M

.jd˛..@xj /
T y!/j2 C jı˛..@xj /

T y!/j2/d�g :

(6.3)
In the following, we will take the sum over j and compute each term separately. For
this, we let ¹e1; : : : ; enº denote a local orthonormal frame of TM . Recall that any
complex p-form ˇ on M can be written as ˇ D 1

p

Pn
sD1 e

�
s ^ .esyˇ/, and therefore,Pn

sD1hesyˇ; esyi D phˇ; i for any complex p-forms ˇ;  . Now, the sum over j of
the term under the integral in the left-hand side of (6.3) is equal to

nCmX
jD1

j.@xj /
T y!j2 D

nCmX
jD1

nX
s;tD1

g..@xj /
T ; es/g..@xj /

T ; et /hesy!; ety!i

D

nX
s;tD1

nCmX
jD1

g.@xj ; es/g.@xj ; et /„ ƒ‚ …
ıst

hesy!; ely!i

D

nX
sD1

jesy!j2 D pj!j2: (6.4)

Now, using that .@xj /
T D dM .xj ı �/, we have that rM .@xj /

T D HessM .xj ı �/,
which is then a symmetric endomorphism on TM . Hence, it follows that

ıM ..@xj /
T y!/ D �

nX
iD1

eiy.rMei .@xj /
T y!/ � .@xj /

T yıM! D �.@xj /
T yıM!:

In the last equality, we use the fact that
Pn
iD1 eiy.A.ei /y/ D 0 for any symmetric

endomorphism A of TM . Therefore, we compute

ı˛..@xj /
T y!/ D ıM ..@xj /

T y!/ � i˛y..@xj /
T y!/

D �.@xj /
T yıM! C i.@xj /

T y.˛y!/
D �.@xj /

T yı˛!:
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Hence, we deduce that

nCmX
jD1

jı˛..@xj /
T y!/j2 D

nCmX
jD1

j.@xj /
T yı˛!j2 D .p � 1/jı˛!j2: (6.5)

In the last equality, we apply (6.4) for ı˛! instead of !. Now, using Cartan’s formula
and the identity LXT ! D r

M
XT
! C IIŒp�

X?
! for any parallel vector field X 2 RnCm

proven in [14, formula (4.3)], where IIŒp�
X?

is defined in (3.5), we write

d˛..@xj /
T y!// D dM ..@xj /

T y!/C i˛ ^ ..@xj /
T y!/

D L.@xj /
T ! � .@xj /

T ydM! C i˛ ^ ..@xj /
T y!/

D r
M
.@xj /

T ! C IIŒp�
.@xj /

? ! � .@xj /
T ydM! C i˛ ^ ..@xj /

T y!/

D r
M
.@xj /

T ! C IIŒp�
.@xj /

? ! � .@xj /
T yd˛! C i.@xj /

T y.˛ ^ !/

C i˛ ^ ..@xj /
T y!/

D r
˛
.@xj /

T ! C IIŒp�
.@xj /

? ! � .@xj /
T yd˛!: (6.6)

In the last equality, we use the relationXy.˛ ^!/D ˛.X/! � ˛ ^ .Xy!/ for a vector
field X and the definition of the magnetic covariant derivative r˛X D r

M
X C i˛.X/.

Now, we want to take the norm in (6.6) and sum over j . We have

nCmX
jD1

jr
˛
.@xj /

T !j
2
D

nCmX
jD1

nX
s;tD1

g..@xj /
T ; es/g..@xj /

T ; et /hr
˛
es
!;r˛et!i

D

nX
s;tD1

nCmX
jD1

g.@xj ; es/g.@xj ; et /„ ƒ‚ …
ıst

hr
˛
es
!;r˛et!i

D

nX
sD1

jr
˛
es
!j2 D jr˛!j2:

We can do the same procedure for the cross terms in (6.6), for example, if we denote
by ¹f1; : : : ; fmº a local orthonormal frame of TM?, we compute

nCmX
jD1

hr
˛
.@xj /

T !; II
Œp�

.@xj /
? !i D

nCmX
jD1

nX
sD1

mX
tD1

h.@xj /
T ; esih.@xj /

?; ft ihr
˛
es
!; IIŒp�

ft
!i

D

nX
sD1

mX
tD1

nCmX
jD1

g.@xj ; es/h@xj ; ft i„ ƒ‚ …
hes ;ft iD0

hr
˛
es
!; IIŒp�

ft
!i D 0:
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Therefore, all the terms involving .@xj /
T and .@xj /

? at the same time will vanish,
and we get

nCmX
jD1

jd˛..@xj /
T y!//j2 D jr˛!j2 C

mX
tD1

j IIŒp�
ft
!j2 C .p C 1/jd˛!j2

� 2

nX
sD1

Re.hr˛es!; esyd
˛!i/

D jr
˛!j2 C

mX
tD1

j IIŒp�
ft
!j2 C .p � 1/jd˛!j2: (6.7)

Replacing (6.4), (6.5), and (6.7) into inequality (6.3), we obtain

�˛1;p�1.M/p

Z
M

j!j2d�g

�

Z
M

�
jr
˛!j2 C

mX
tD1

j IIŒp�
ft
!j2 C .p � 1/.jd˛!j2 C jı˛!j2/

�
d�g :

Now, using equality (5.3) for the eigenform ! with Dirichlet boundary conditions
yields thatZ

M

jr
˛!j2d�g D �

˛
1;p.M/

Z
M

j!j2d�g �

Z
M

hBŒp�;˛!;!id�g :

Hence, we deduce that

�˛1;p�1.M/p

Z
M

j!j2d�g � p�
˛
1;p.M/

Z
M

j!j2d�g �

Z
M

hBŒp�;˛!;!id�g

C

mX
tD1

Z
M

h.IIŒp�
ft
/2!;!id�g ;

which ends the proof.

Corollary 6.4. Let .M n; g/ be a domain in Euclidean space Rn and let ˛ be a 1-form
onM . Then, for all p � 1, the eigenvalues of the magnetic Dirichlet Laplacian satisfy

�˛1;p.M/ � �˛1;p�1.M/ � kdM˛k1:

In particular, the following estimate

�˛1;p.M/ � �0.M/ � pkdM˛k1

holds, where �0.M/ is the first eigenvalue of the scalar Laplacian with Dirichlet
boundary condition.
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Proof. Since M is a domain in Euclidean space, the second fundamental form and
the curvature operator of M vanish. Therefore, Theorem 6.3 allows us to deduce that

�˛1;p � �
˛
1;p�1 C

1

p
sup
x2M

�min.�iA
Œp�;˛/:

Recall here that �iAŒp�;˛ is a symmetric tensor field where A˛.X/ D XydM˛ for
all X 2 TM . Now, by the second inequality in (3.7), we have iAŒp�;˛ � pkA˛k �
pkdM˛k1. This finishes the first part. The second part is easily proved by taking
successive p’s.

Corollary 6.5. Let .M n; g/ be a domain in the round unit sphere Sn and let ˛ be a
1-form onM . Then, for all p � 1, the eigenvalues of the magnetic Dirichlet Laplacian
satisfy

�˛1;p.M/ � �˛1;p�1.M/C n � 2p � kdM˛k1:

In particular, the following estimate

�˛1;p.M/ � �0.M/C p.n � p � 1 � kdM˛k1/

holds, where �0.M/ is the first eigenvalue of the scalar Laplacian with Dirichlet
boundary condition.

Proof. We use the isometric immersion of Sn ,! RnC1 for which the second fun-
damental form is the identity. The proof is then a direct consequence of Theorem 6.3
using the fact that, on the round sphere, BŒp�D p.n�p/ and

Pm
aD1.II

Œp�

fa
/2D p2.

A. Spectral computations for magnetic Laplacians for functions on
Berger spheres

A.1. Eigenvalue decomposition of the ordinary Laplacian on the standard
3-sphere

The following considerations are based on the arguments given in [17, p. 27]. For
further details see also [25, III.3–III.7].

Let S3 D ¹.z1; z2/ 2 C2 j jz1j
2C jz2j

2 D 1º be the 3-dimensional unit sphere and
let g be the standard metric on S3 of curvature one. We can also think of S3 as the
Lie group of all unit quaternions via the identification .z1; z2/ 7! z1 C jz2 2H2. Let
Y2; Y3; Y4 be the left-invariant extensions of the tangent vectors i;�k;�j 2 T1S3. In
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this case, the vectors

Y2 D �y1@x1 C x1@y1 � y2@x2 C x2@y2 ;

Y3 D �y2@x1 � x2@y1 C y1@x2 C x1@y2 ;

Y4 D x2@x1 � y2@y1 � x1@x2 C y1@y2

form an orthonormal basis of T.z1;z2/S
3 at every point .z1; z2/ D .x1 C y1i;

x2 C y2i/ 2 S3.
Then, we can write the Laplacian on .S3; g/ as �S3f D �

P4
jD2 Y

2
j .f / for all

functions f 2 C1.S3/, whose eigenvalues are �k.S3/ D k.k C 2/, k 2 N [ ¹0º

with multiplicity .k C 1/2. In particular, every eigenspace Ek associated with the
eigenvalue �k decomposes as

Ek D Vk;.a0;b0/ ˚ Vk;.a1;b1/ ˚ � � � ˚ Vk;.ak ;bk/; (A.1)

with any arbitrary choice of pairwise non-collinear vectors .aj ; bj / 2 C n ¹.0; 0/º,
where

Vk;.a;b/ D spanC¹u
k
a;b; u

k�1
a;b va;b; : : : ; ua;bv

k�1
a;b ; v

k
a;bº;

ua;b.z1; z2/´ az1 C bz2; va;b.z1; z2/´ b Nz1 � a Nz2;

for .a; b/ 2 C2 n ¹.0; 0/º, see [25, Zerlegungssatz III.6.2]. For short, we write u´
u.a;b/, v´ v.a;b/ for some .a; b/ ¤ .0; 0/ and, for p 2 ¹0; : : : ; kº, we consider

�p ´ upvq�1

with p C q D k C 1. (We also set �p � 0 for all other choices of p.) These functions
�p are spherical harmonics, that is, they are restrictions of harmonic homogeneous
polynomials on C2 to the unit sphere S3. Then we have Vk;.a;b/D spanC¹�0; : : : ;�kº.
A straightforward computation yields (see [17, p. 30] or [25, Lemma III.7.1])

Y2.�p/ D i.p � q C 1/�p; (A.2)

Y3.�p/ D ip�p�1 C i.q � 1/�pC1;

Y4.�p/ D �p�p�1 C .q � 1/�pC1;

.Y 23 C Y
2
4 /.�p/ D 2.p � 2pq � q C 1/�p:

This implies

�S3�p D �

4X
jD2

Y 2j .�p/ D Œ.p C q/
2
� 1��p D k.k C 2/�p;

confirming that the functions �p are eigenfunctions of �S3 in the eigenspace Ek .
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Let us briefly describe the underlying representation theory. The Lie group SU.2/
acts irreducibly on each of the vector spaces Vk;.a;b/ � CŒz1; Nz1; z2; Nz2� via

�WSU.2/ � Vk;.a;b/ ! Vk;.a;b/; �.A; P.u; v// D P..u; v/ � A/;

where P 2CŒw1;w2� is any homogeneous polynomial of degree k. Using the decom-
position (A.1), these irreducible representations �j on each of the factors Vk;.aj ;bj /
give rise to the SU.2/-representation

�k ´ �0 ˚ �1 ˚ � � � ˚ �k

on the eigenspace Ek .
On the other hand, the identification of S3 with the Lie group SU.2/ via

.z1; z2/ 7!

�
z1 �Nz2

z2 Nz1

�
provides a canonical isometric SU.2/-right action on .S3; g/, which leads to the cor-
responding unitary SU.2/-action

.Af /.z1 C jz2/ D f ..z1 C jz2/.˛ C jˇ// forA D
�
˛ � Ň

ˇ N̨

�
2 SU.2/

on the function space C1.S3/ � L2.S3; g/. Since �S3 commutes with isometries,
the eigenspace Ek � C1.S3/ is an invariant subspace of this latter action, and
its restriction to Ek agrees with the above SU.2/-representation �k (see [25,
Lemma III.6.5]).

Now, let S1 ,! S3! S2 be the Hopf fibration of .S3; g/, where the fiber through
a point .z1; z2/ 2 S3 is given by F.z1;z2/ ´ ¹.e

itz1; e
itz2/j t 2 Rº � S3. The map

S3 ! S2 is a Riemannian submersion, the fibers are totally geodesic, and we have

T.z1;z2/S
3
D V.z1;z2/ ˚H.z1;z2/

for any .z1; z2/ 2 S3, where the vertical component V.z1;z2/ is spanned by Y2 and the
horizontal component H.z1;z2/ is spanned by Y3 and Y4. This decomposition induces
a corresponding splitting

�S3
D �v C�h

of �S3 into a vertical and a horizontal Laplacian �v and �h (see [4, Definitions 1.2
and 1.3]) with

�v D �Y 22 and �h D �.Y 23 C Y
2
4 /:

Since the fibers are totally geodesic, the three operators �S3 ; �v; �h commute with
each other, and L2.S3/ admits a Hilbert basis consisting of simultaneous eigenfunc-
tions of �S3 and �h (see [4]). In our case, this Hilbert basis is obtained through the
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eigenspaces Ek and their decompositions into the subspaces Vk;.a;b/, whose corre-
sponding basis vectors �p , p 2 ¹0; : : : ; kº, are then the members of this Hilbert basis.

A.2. Geometry of Berger spheres

Given the standard metric g on S3 of curvature 1 and " > 0, the Berger sphere is the
Riemannian manifold .S3; g"/ with

g" D "
2gjV�V ˚ gjH�H ;

and the vector fields Y "2 ´ "�1Y2; Y
"
3 ´ Y3; Y

"
4 ´ Y4 form a global orthonormal

frame. The Lie brackets are given by

ŒY "2 ; Y
"
3 � D �

2

"
Y "4 ; ŒY "2 ; Y

"
4 � D

2

"
Y "3 ; ŒY "3 ; Y

"
4 � D �2"Y

"
2 ;

and the Christoffel symbols of the Levi-Civita connection of g" are expressed as

r
S3

Y "
j
Y "k D �jkY

"
l (A.3)

with ¹j; k; lº D ¹2; 3; 4º for k ¤ j , �jj D 0 and �23 D��24 D "� 2=", �32 D �43 D
��34 D ��42 D ". In particular, we deduce that

dS3Y "2 D 2"Y
"
3 ^Y

"
4 ;d

S3Y "3 D�
2

"
Y "2 ^Y

"
4 ; d

S3Y "4 D
2

"
Y "2 ^Y

"
3 and ıS3Y "j D 0:

(A.4)
for j 2 ¹2; 3; 4º. Here ıS3 is the L2-adjoint of dS3 with respect to the metric g".
The curvature tensor associated to the Levi-Civita connection of g" can be computed
explicitly and is equal to

RS3.Y "j ; Y
"
k /Y

"
l D �jklY

"
j

with �jkl D 0 for ¹j; k; lº D ¹2; 3; 4º, �233 D �244 D �322 D �422 D "2 and �344 D
�433 D 4 � 3". The sectional curvatures of the planes spanned by pairs of Y "i ’s are

KS3.span¹Y "2 ; Y
"
3 º/ D K

S3.span¹Y "2 ; Y
"
4 º/ D "

2;

KS3.span¹Y "3 ; Y
"
4 º/ D 4 � 3"

2:

The Ricci tensor of any vector v D
P4
jD2 ajY

"
j is given by

RicS3.v; v/ D

4X
jD2

g".R
S3.v; Y "j /Y

"
j ; v/ D 2"

2a22 C .4 � 2"
2/.a23 C a

2
4/;
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which yields the following lower Ricci curvature bounds

inf
kvkD1

.RicS3.v; v// �

´
2"2 if " � 1,

4 � 2"2 if " > 1.

Observe, moreover, that lim"!0 RicS3.v/ D 4.a23 C a
2
4/. Since the “scaled” Hopf

fibration S1" ,! S3 ! S2 is a Riemannian submersion with totally geodesic fiber S1"
(see [4, Proposition 5.2]), any horizontal vector vh 2 H.z1;z2/ for .z1; z2/ 2 S3 is
uniquely mapped to a vector Qv 2 TS2 and so we can say that, as "! 0, the Ricci
curvature of .S3; g"/ collapses to the Ricci curvature of C1 with the Fubini–Study
metric.

A.3. Eigenvalue decomposition of the ordinary Laplacian on Berger spheres

In this section, we will compute the eigenvalues of the Laplacian on the Berger sphere
S3. We refer to [30, Lemma 4.1] and [21, Proposition 3.9] for similar results.

Since Y "2 ; Y
"
3 ; Y

"
4 form a global divergence-free orthonormal frame by (A.4), the

Laplacian on .S3; g"/ is given by

�S3
" f D �

4X
jD2

.Y "j /
2f for all f 2 C1.S3/:

Using the fact that S1" ,! S3! S2 is a Riemannian submersion with totally geodesic
fibers, we can write

�S3
" D �

v
" C�

h
" D "

�2�v C�h D �S3
C ."�2 � 1/�v;

where �v;�h are the vertical and horizontal Laplacian w.r.t. g and �S3 is the Lapla-
cian on S3 with respect to g.

Since ¹�pºp is a Hilbert basis for L2.S3; g/, the set ¹�"p ´ "1=2�pºp is a Hilbert

basis for L2.S3; g"/. Moreover, the functions �"p’s are eigenfunctions for �S3
" :

�S3
" �

"
p D k.k C 2/�

"
p C ."

�2
� 1/.p � q C 1/2�"p

D

h
k.k C 2/C

� 1
"2
� 1

�
.2p � k/2

i
�"p:

The eigenvalues of �S3
" are therefore all of the form

k.k C 2/C
� 1
"2
� 1

�
.2p � k/2; k 2 N [ ¹0º; p 2 ¹0; : : : ; kº:

One could also read off the spectrum of the vertical Laplacian �v from [30,
Lemma 3.1]. Table 1 lists the eigenvalues for k 2 ¹0; 1; 2; 3º.
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k p �"
k;p

0 0 0

1 0; 1 2C "�2

2 0; 2 4C 4"�2

2 1 8

3 0; 3 6C 9"�2

3 1; 2 14C "�2

Table 1

Therefore, the first non-zero eigenvalue of �S3
" is 8 if " � 1=

p
6 and 2C "�2 if

" > 1=
p
6. Moreover, all the eigenvalues of �S3

" tend to1, if k ¤ 2p, when " tends
to 0 and are equal to k.k C 2/ if k D 2p. Hence, as "! 0, the only eigenvalues not
escaping to infinity are the ones coming from the Laplacian on C1 with the Fubini–
Study metric (recall that its spectrum is 4p.pC 1/D k.kC 2/ with p 2N [ ¹0º and
k D 2p).

A.4. The magnetic Laplacian with constant magnetic potential along the fibers
on Berger spheres

As before let .S3; g"/ be the Berger sphere and set ˛ ´ "tY "2 D tY2, by the iden-
tification through musical isomorphisms. Then j˛j2 D "2t2 and ıS3˛ D 0 by (A.4).
Therefore, for the magnetic Laplacian �˛" on .S3; g"/ we have,

�˛" f D �
S3
" f � 2i˛

].f /C "2t2f:

Applying this identity to the functions f ´ �"p D "
1=2�p yields

�˛"�
"
p D

�
k.k C 2/C

� 1
"2
� 1

�
.2p � k/2 C 2.2p � k/t C "2t2

�
�"p;

since
˛].�"p/ D tY2.�

"
p/ D i t.p � q C 1/�

"
p D i t.2p � k/�

"
p

by (A.2) and p C q D k C 1. Therefore, the spectrum of �˛" is given by

k.kC 2/C
� 1
"2
� 1

�
.2p � k/2C 2.2p � k/t C "2t2; k 2N [ ¹0º; p 2 ¹0; : : : ; kº:

(A.5)
If "! 0 (that is, if we are shrinking the fibers), the only eigenvalues not escaping to
infinity, are k.k C 2/ for even integers k � 0, that is, the eigenvalues of the Laplacian
on C1 with Fubini–Study metric. In other words, the magnetic potential disappears
under this process.
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B. Special eigen-1-forms of the (magnetic) Hodge Laplacian on S3

Let ˛ D "tY "2 be a Killing vector field of constant norm, then by Proposition 3.6 we
have that �˛" .d

S3u/ D dS3.�˛"u/ and �˛" .d
S3v/ D dS3.�˛" v/. Now, by (A.5), for

the function u (which corresponds to p D q D k D 1) and the function v (which
corresponds to p D 0; q D 2; k D 1), we compute

�˛"u D
�
2C

1

"2
C 2t C "2t2

�
u and �˛" v D

�
2C

1

"2
� 2t C "2t2

�
v:

Hence, dS3u and dS3v are eigenforms of �˛" corresponding to the eigenvalues .2C
1
"2
C 2t C "2t2/ and .2C 1

"2
� 2t C "2t2/ respectively.

To compute �˛"Y
"
2 , (A.4) implies that Y "2 is coclosed and dS3Y "2 D 2"Y

"
3 ^ Y

"
4 .

Thus, by (A.3), we get that �S3
" Y

"
2 D 4"

2Y "2 . Also, we have

AŒ1�;˛Y "2 D �A
˛.Y "2 / D �Y

"
2 y.2"tY "3 ^ Y

"
4 / D 0; and r

M
˛ Y

"
2 D 0:

Therefore, by (3.10), we get that �˛"Y
"
2 D "2.4 C t2/Y "2 : In the same way one can

check that
�˛"Y

"
3 D

� 4
"2
C t2"2

�
Y "3 C 2i"t

�
1 � "C

2

"

�
Y "4 ;

and that
�˛"Y

"
4 D

� 4
"2
C t2"2

�
Y "4 � 2i"t

�
1 � "C

2

"

�
Y "3 :

Hence, for "D 2, we get that Y "3 and Y "4 are eigenvectors associated to the eigenvalue
1C 4t2.
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