Umer Zeeshan Ijaz
Analysis of pit latrine microbiota reveals depth-related variation in composition, and key parameters and taxa associated with latrine fill-up rate
Ijaz, Umer Zeeshan; Gundogdu, Ozan; Keating, Ciara; Eekert, Miriam van; Gibson, Walter; Parkhill, Julian; Abilahi, Faraji; Liseki, Benard; Nguyen, Viet-Anh; Sudgen, Steven
Authors
Ozan Gundogdu
Dr Ciara Keating ciara.keating@durham.ac.uk
Assistant Professor
Miriam van Eekert
Walter Gibson
Julian Parkhill
Faraji Abilahi
Benard Liseki
Viet-Anh Nguyen
Steven Sudgen
Abstract
Pit latrines are used by billions of people globally, often in developing countries where they provide a low-tech and low-cost sanitation method. However, health and social problems can arise from a lack of emptying or maintenance of these facilities. A better understanding of the biological and environmental parameters within pit latrines could inform attempts to enhance material decomposition rates, and therefore slow fill-up rate. In this study, we have performed a spatial analysis of 35 Tanzanian pit latrines to identify bacteria and environmental factors that are associated with faster or slower pit latrine fill-up rates. Using ordination of microbial community data, we observed a linear gradient in terms of beta diversity with increasing pit latrine sample depth, corresponding to a shift in microbial community structure from gut-associated families in the top layer to environmental- and wastewater-associated taxa at greater depths. We also investigated the bacteria and environmental parameters associated with fill-up rates, and identified pH, volatile solids, and volatile fatty acids as features strongly positively correlated with pit latrine fill-up rates, whereas phosphate was strongly negatively correlated with fill-up rate. A number of pit latrine microbiota taxa were also correlated with fill-up rates. Using a multivariate regression, we identified the Lactobacillaceae and Incertae_Sedis_XIII taxa as particularly strongly positively and negatively correlated with fill-up rate, respectively. This study therefore increases knowledge of the microbiota within pit latrines, and identifies potentially important bacteria and environmental variables associated with fill-up rates. These new insights may be useful for future studies investigating the decomposition process within pit latrines.
Citation
Ijaz, U. Z., Gundogdu, O., Keating, C., Eekert, M. V., Gibson, W., Parkhill, J., Abilahi, F., Liseki, B., Nguyen, V.-A., & Sudgen, S. (2022). Analysis of pit latrine microbiota reveals depth-related variation in composition, and key parameters and taxa associated with latrine fill-up rate. Frontiers in Microbiology, 13, Article 960747. https://doi.org/10.3389/fmicb.2022.960747
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 29, 2022 |
Online Publication Date | Sep 23, 2022 |
Publication Date | 2022 |
Deposit Date | Oct 28, 2024 |
Journal | Frontiers in Microbiology |
Print ISSN | 1664-302X |
Electronic ISSN | 1664-302X |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Article Number | 960747 |
DOI | https://doi.org/10.3389/fmicb.2022.960747 |
Public URL | https://durham-repository.worktribe.com/output/1871529 |
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search