Skip to main content

Research Repository

Advanced Search

A Scaling for the Permeability of Loose Magma Mush Validated Using X‐Ray Computed Tomography of Packed Confectionary in 3D and Estimation Methods From 2D Crystal Shapes

Bretagne, Eloïse; Wadsworth, Fabian B.; Vasseur, Jérémie; Dobson, Katherine J.

A Scaling for the Permeability of Loose Magma Mush Validated Using X‐Ray Computed Tomography of Packed Confectionary in 3D and Estimation Methods From 2D Crystal Shapes Thumbnail


Authors

Jérémie Vasseur

Katherine J. Dobson



Abstract

Melt percolation through partially molten “mushy” regions of the crust underpins models for magma migration, accumulation, and processes that prime systems for eruption. Knowledge of the hydraulic properties of magma mush, specifically permeability, is required for accurate predictions of melt migration rates and accumulation timescales. Previous studies, validated for cuboidal crystal analogs, show that crystal shape exerts a first‐order control on the permeability, and is tested here for anisometric natural crystal shapes using X‐ray CT 3D data sets of magma mush analogs made from packed confectionary particles arranged randomly. We use a lattice‐Boltzmann fluid flow simulation tool to determine the permeability of the analogue melt phase network between the packed particles. We find excellent agreement with our data sets to within ∼0.1 log units, when the specific surface area is measured. To extend this to more typical cases where the specific surface area is unknown, we use the shape and size of the objects determined in both 3D and 2D to estimate the specific surface area assuming a cuboid approximation. These approximate solutions give good results to within ∼0.5 log units of the measured permeability and offer a method by which permeability could be estimated from a thin section of a cumulate or pluton sample. Our shape‐sensitive approach is more accurate than existing models for permeability of magma mush, most approximating natural crystal shapes to spheres. We therefore propose that these could be implemented in dynamic magma mush models for melt movement in the crust to produce more accurate flux predictions.

Citation

Bretagne, E., Wadsworth, F. B., Vasseur, J., & Dobson, K. J. (2023). A Scaling for the Permeability of Loose Magma Mush Validated Using X‐Ray Computed Tomography of Packed Confectionary in 3D and Estimation Methods From 2D Crystal Shapes. Journal of Geophysical Research: Solid Earth, 128(10), Article e2023JB026795. https://doi.org/10.1029/2023jb026795

Journal Article Type Article
Acceptance Date Sep 19, 2023
Online Publication Date Oct 11, 2023
Publication Date Oct 1, 2023
Deposit Date Oct 17, 2023
Publicly Available Date Oct 17, 2023
Journal Journal of Geophysical Research: Solid Earth
Print ISSN 2169-9313
Publisher American Geophysical Union
Peer Reviewed Peer Reviewed
Volume 128
Issue 10
Article Number e2023JB026795
DOI https://doi.org/10.1029/2023jb026795
Keywords trans‐crustal, magma chamber, igneous petrology, percolation, melt extraction
Public URL https://durham-repository.worktribe.com/output/1797635

Files




You might also like



Downloadable Citations