
1. Introduction
The dynamics of magma movement through the Earth's crust remain poorly understood. The leading models 
contend that magmas accumulate in the upper crust through repeated intrusive emplacement as mush—a mixture 
of crystals and melt in varying proportions. Magma mush is defined as a semi-rigid framework of packed and vari-
ably intergrown or overgrown crystals with an interstitial melt phase (Cashman et al., 2017; Sparks et al., 2019). 
Upon emplacement in the crust, melts can migrate relative to and through the magma mush (Annen,  2009; 
Bachmann & Bergantz, 2004; Cashman et al., 2017; Jackson et al., 2018; Sparks et al., 2019). Therefore, for 
large portions of the system, the advection of melt from one place to another is hosted in a porous medium, the 
solid static framework of which is a complex 3D manifold of crystal phases. This means a key parameter that 
can limit the rates and fluxes of melt through the system is the permeability of the mush. All crust-scale models 
require permeability to compute fluxes (Bachmann & Bergantz, 2004; Jackson et al., 2018) and yet there is rela-
tively little work constraining mush permeability and how it evolves (Bretagne et al., 2023; Cheadle et al., 2004; 
Hersum, 2009; Hersum et al., 2005).

Abstract Melt percolation through partially molten “mushy” regions of the crust underpins models for 
magma migration, accumulation, and processes that prime systems for eruption. Knowledge of the hydraulic 
properties of magma mush, specifically permeability, is required for accurate predictions of melt migration 
rates and accumulation timescales. Previous studies, validated for cuboidal crystal analogs, show that crystal 
shape exerts a first-order control on the permeability, and is tested here for anisometric natural crystal shapes 
using X-ray CT 3D data sets of magma mush analogs made from packed confectionary particles arranged 
randomly. We use a lattice-Boltzmann fluid flow simulation tool to determine the permeability of the analogue 
melt phase network between the packed particles. We find excellent agreement with our data sets to within ∼0.1 
log units, when the specific surface area is measured. To extend this to more typical cases where the specific 
surface area is unknown, we use the shape and size of the objects determined in both 3D and 2D to estimate the 
specific surface area assuming a cuboid approximation. These approximate solutions give good results to within 
∼0.5 log units of the measured permeability and offer a method by which permeability could be estimated from 
a thin section of a cumulate or pluton sample. Our shape-sensitive approach is more accurate than existing 
models for permeability of magma mush, most approximating natural crystal shapes to spheres. We therefore 
propose that these could be implemented in dynamic magma mush models for melt movement in the crust to 
produce more accurate flux predictions.

Plain Language Summary Magma chambers in the Earth are “mushy,” meaning that liquid magma 
is trapped in between solid crystals. In many cases, the liquid magma must escape before an eruption occurs. 
For the liquid magma to escape, it must move through the tight spaces between the solid crystals, which occurs 
at a speed dictated by the “permeability” of the crystal framework. Here, we use fudge and sugar crystals as a 
proxy for the solid crystals in these magma chambers, and we use simulations to observe how the fluid between 
the fudge and sugar moves. The key advance here is that we show how the complicated shape of fudge and 
sugar crystals changes the speed at which the fluid is able to move.
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While the exact physical processes are debated (cf. Holness, 2018; Liu & Lee, 2021), the extraction of melts from 
mushes primes some magmatic systems to erupt voluminous crystal-poor silicic magmas in very large eruptions 
(Bachmann & Bergantz, 2004; Hildreth & Wilson, 2007; Wilson et al., 2021). Therefore, while understanding 
mush permeability is important for predicting melt migration in general, it may also hold the key to understanding 
the timescales of melt extraction prior to Earth's largest eruptions.

“Magma mush” is a term that is used in different ways in published work but in most cases a “mush” refers to a 
magma with a crystallinity above a certain threshold value. Generally speaking, this threshold value is thought to 
represent the demarcation between (a) a suspension of crystals in a melt-dominated magma, and (b) a framework 
of crystals with interstitial melt; the latter being a “mush” (Dufek & Bachmann, 2010; Tramontano et al., 2017). 
Here, we follow Bretagne et al. (2023) in defining a “loose mush” in terms of a crystallinity range ϕτ ≤ ϕ ≤ ϕj, 
where ϕ is the crystal volume fraction in the magma, ϕτ is the lowest value of ϕ where crystal-crystal interactions 
become important and a yield stress manifests, and ϕj is the upper bound of the “loose mush” definition where 
crystals are jammed at what is sometimes called the maximum packing. Importantly, ϕj < 1, meaning that there 
are other regions of the “mush” definition at ϕ > ϕj where crystal intergrowths or overgrowths, or nucleation of 
phases in the interstices of packed crystal frameworks become important. Bretagne et al. (2023) showed that the 
values of ϕτ and ϕj depend on crystal shape, with important implications for the controls of mush mineralogy on 
the evolving properties of mush.

Typically, the permeability k of mushy magma is predicted using a general scaling such as 𝐴𝐴 𝐴𝐴 = 𝑎𝑎2𝛽𝛽𝛽𝛽3
𝑚𝑚 (Jackson 

et al., 2018), where a is the crystal “size” (usually radius), ϕm is the melt fraction interstitial to the crystals (such 
that ϕm = 1 − ϕ in a two-phase crystal-melt system), and β is a constant. This approach encompasses the widely 
used Kozeny-Carman formulation 𝐴𝐴 𝐴𝐴 = 𝜙𝜙3

𝑚𝑚𝑎𝑎
2∕
(

150(1 − 𝜙𝜙𝑚𝑚)
2
)

 , for which 𝐴𝐴 𝐴𝐴 = 1∕
(

150(1 − 𝜙𝜙𝑚𝑚)
2
)

 (e.g., Bachmann 
& Bergantz, 2004). In these models, complex crystal habits and multi-component mushes are reduced to a single 
size parameter a, despite evidence that the shape of the objects defining the solid framework in a porous medium 
has a first-order effect on the possible packing geometries (e.g., Liu et al., 2017) and the resulting permeability 
at those packings (Bretagne et al., 2023). Here, we move beyond idealized shapes and test more sophisticated 
permeability models against packs of realistic particles explicitly. Our aim is to constrain the efficacy of magma 
mush permeability models.

2. A Permeability Model for Loose Mush
The simplest and most widely used model for the permeability k of packed particles is the Kozeny-Carman model 
(Ergun, 1952). While this model is given in a variety of forms, sometimes including additional parameters such 
as a pore network tortuosity, and the specific lengths of pores or particles, the more general form is

� =
�3
�

��2
 (1)

where ϕm is the volume fraction of the non-particle phase, C is a constant, and s is the specific surface area of the 
pore space (Torquato, 2013; Röding et al., 2020; Vasseur & Wadsworth, 2017; Wadsworth et al., 2017; Vasseur 
et al., 2021, 2022). In the case of magma mush, we can think of ϕm as being the melt volume fraction, and then 
ϕ = 1 − ϕm representing the crystal volume fraction (assuming a two-phase system). In general, across a very wide 
range of porous media, C ≈ 5 appears to result in a good match between Equation 1 and empirical data when the 
medium is statistically representative and isotropic (Torquato, 2013; Vasseur et al., 2021). Since C appears inde-
pendent of the medium, and ϕ can be readily determined using image analysis tools or laboratory methods, it only 
remains to constrain s. If we take s = 3(1 − ϕm)/R as the specific surface area of monodispersed spheres of radius 
R in a volume (sphere volume fraction 1 − ϕm) Equation 1 becomes the more familiar 𝐴𝐴 𝐴𝐴 = 𝜙𝜙3

𝑚𝑚𝑅𝑅
2∕
(

9𝐶𝐶(1 − 𝜙𝜙𝑚𝑚)
2
)

 . 
For magma mush, a model of this form is used commonly (e.g., Bachmann & Bergantz, 2004).

For cuboids with three independent axis lengths 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 and 𝑐𝑐 , the s is given explicitly by (adapted from Bretagne 
et al. (2023))

𝑠𝑠 = 2(1 − 𝜙𝜙𝑚𝑚)
(

1

𝑎𝑎
+

1

𝑏𝑏
+

1

𝑐𝑐

)

 (2)

and so for packs of cuboids, the Kozeny-Carman law given in Equation 1 becomes
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𝑘𝑘 =
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𝑚𝑚

4𝐶𝐶(1 − 𝜙𝜙𝑚𝑚)
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+
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𝑏𝑏
+

1

𝑐𝑐

)-2

 (3)

This implies that if the cuboid lengths a, b, and c and the melt fraction ϕm can be determined, so too can the 
permeability. Bretagne et al. (2023) validated the efficacy of Equation 3 for 3D simulated volumes of packed 
cuboids for which b = c (i.e., square-ended cuboids), However, some key aspects of this hypothesis still require 
testing, specifically does Equation 3 remain valid for: (a) cuboids for which b ≠ c; (b) particles that are not 
cuboids but which could be approximated as cuboids; and (c) given the sensitivity of k to s (via s 2 in Equation 1), 
is Equation 3 valid for rough particles or particles for which the surface area is far larger than the particle shape 
might imply? Here, we provide the results of these tests of these questions.

Equation 3 is in dimensional form, which means that it is scale-dependent and k depends on not only the relative 
ratios of a, b, and c, but also on the magnitude of a, b, and c. In order to compare simulation results or empiri-
cal data across scales, while still testing Equation 3, we can introduce a scaling parameter, which is a reference 
permeability. We choose ks = 2(1 − ϕm)/s 2 (Bretagne et al., 2023), which is a so-called “Stokes permeability” 
(Bretagne et al., 2023; Martys et al., 1994; Vasseur et al., 2021, 2022; Wadsworth et al., 2016). For some idealized 
systems of solid spheres in a volume, the Stokes permeability is the limiting value of k as ϕm → 1 and is related 
to Stokes law for the drag around a sphere. If we divide Equation 1 by this value, we retrieve a dimensionless 
permeability 𝐴𝐴 𝑘𝑘 that should be universal and scale independent and applicable across a wide range of mush types 
in nature and the laboratory (Vasseur et al., 2021, 2022)

𝑘𝑘 =
𝑘𝑘

𝑘𝑘𝑠𝑠

=
𝜙𝜙𝑚𝑚

3

2𝐶𝐶(1 − 𝜙𝜙𝑚𝑚)
. (4)

3. Materials and Methods
3.1. Methods to Test the Permeability Model

In the crust, preserved examples of mush show that the crystals are typically intergrown or overgrown such that 
the crystallinity is high (Cashman et al., 2017; Sparks et al., 2019, 2022). By contrast, erupted magmas, and even 
what are thought of as “high crystallinity” dome lavas, are typically melt-dominated (see crystallinity ranges in 
Popa et al. (2021)). Therefore, during crystallization, crystal-settling (Dufek & Bachmann, 2010), or compaction 
(e.g., Bachmann & Bergantz, 2008) magmas on their way to becoming mush will transition through the “loose 
mush” window of melt fraction. That is, crystals will begin to touch one another and interact in a framework with 
melt between them (see Figure 1A in Holness et al. (2019)). In such loose packings, the majority of the crystals 
share contacts with neighboring crystals and form an interconnected structure, and the degree of intergrowth is 
low. It is these loose mush materials that we emulate here. To create real loose mush analogs in the laboratory 
with a range of particle geometries, we represent the crystals by confectionary: either near cubic or cuboidal 
shape, smooth faced fudge chunks, or non-cuboid rough sugar crystals (Figure 1).

We load particles randomly into a 20 mm diameter cylindrical centrifuge tube, ensuring at least 10 particles can 
fit across the cylinder diameter. The cylinders are shaken slightly to settle the particles into a near-random close 
pack, and then imaged using a Nikon XTH LC 225 kV 225°W Ultrafocus laboratory X-ray tomography scanner at 
the University of Strathclyde. Scans were performed at 90 kV (either 91 μA and 2 s exposure, or 209 μA and 1 s 
exposure depending on scan) and were reconstructed using built-in algorithms to give a 2,000 voxel image with 
16 μm voxel resolution. The scans of loosely packed particles produce density contrast grayscale data (Figures 1a 
and 1c). Visualization and segmentation of the solid and interstitial phases into binary images were performed 
using Avizo© (Figures 1b and 1d, see Dobson et al. (2020) for more details on the methodology in Avizo©). The 
confectionary is segmented as a whole entity and is analogous to natural loosely packed crystals in a mush; the 
interstitial phase exists as one continuous connected material in the 3D data and represents the interstitial melt in 
our analogue magma mush system.

In order to determine a permeability, we select the lattice Boltzmann method (LBM) for fluid flow simulation. 
Although early versions of the LBM (McNamara & Zanetti, 1988) suffered from the same high computational 
expense as alternative methods, such as smoothed particle hydrodynamics (Jiang & Sousa, 2008) or lattice gas 
autonoma (Frisch et al., 1986), advances in LBM efficiency have made it a go-to mesoscopic fluid flow tool 
(Qian et al., 1992). In addition to computational efficiency, the LBM allows a user to implement solid boundaries 
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of arbitrary complexity without computational penalty (i.e., without the need for local mesh density increases 
around complex boundaries). The LBM has been shown to outperform conventional finite volume fluid dynamic 
methods for complex pore geometries (Bernsdorf et al., 1999; Breuer et al., 2000; Krüger et al., 2017). For these 
reasons, LBM is the method we use.

The binary data sets were loaded into the lattice-Boltzmann fluid flow simulation tool LBflow 
(Llewellin, 2010a, 2010b) which is designed for determining fluid flow through complex porous media. The 
input phase of interest (the porosity between the solid particles used here as a proxy for the melt fraction) is 
discretized into a cubic D3Q15 lattice of fluid nodes. In the lattice Boltzmann simulation, we impose a uniform 
pressure gradient ∇p of 0.01 Pa.m −1 on the fluid in the numerical domain, and fluid mass is propagated through 
the lattice. At each simulation time step, fluid mass can move to neighboring nodes or stay at the current node. 
As well as this propagation, the simulation accounts for fluid collisions. This propagation and collision approach 
is given by the lattice Boltzmann equation (see Llewellin, 2010a, 2010b). Interactions with solid pore walls is 
solved for using bounceback methods (see Succi, 2001) implemented by Llewellin (2010a).

Figure 1. Renderings of representative volume of panels (a)–(b) the packed fudge chunks, and panels (c)–(d) the packed sugar crystals. In panels (a), (c), a 2D slice 
representation of the domains and in panels (b), (d), the 3D renders of the binary data where the blue phase represents the confectionary and the “melt” phase is 
represented by void. In the 2D representations, the scale bar represents 100 μm and in 3D, the scale bar is 200 μm.
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The simulation takes properties (including ∇p) in various simulation units. However, the scalings involved in the 
LBM allow these to be related to real fluid properties. Therefore, we can input fluid properties of our choice. We 
use fluid properties of viscosity μ = 1.8205 Pa.s and ρ = 1.2047 kg.m −3 corresponding to the National Institute of 
Standards and Technology values for air at normal temperature and pressure conditions (20°C and 1 atm respec-
tively), and therefore similar to an air permeability test in the laboratory. The simulation converges to steady 
flow when the average fluid speed does not change by more than 10 −5 simulation units over 50 time-steps twice 
consecutively. At steady state, the principal output of the simulation is the distribution of fluid velocity vectors. 
We take the average fluid speed in the direction in which the pressure gradient was applied u. This speed 𝑢 is
then averaged for the volume, such that 〈u〉 = ϕmu. Which is then input to Darcy's law to retrieve permeability 
values. The initial conditions of the simulation are all chosen to ensure that the model remains in the low Reyn-
olds number Re and low Mach number Ma regime (see Vasseur et al., 2021 for details). For our system we find 
10 −12 ≤ Re ≤ 10 −5 and 10 −16 ≤ Ma ≤ 10 −9.

LBflow has been validated or applied using sphere packs in cubic lattice arrangements (Llewellin,  2010b; 
Wadsworth et al., 2017), random overlapping sphere packs (Vasseur & Wadsworth, 2017; Vasseur et al., 2020), 
hard sphere packs (Vasseur et al., 2021, 2022), hexagonal arrays (Vasseur & Wadsworth, 2019), fibrous porous 
media (Nabovati et al., 2009), sintering systems (Wadsworth et al., 2017, 2021), and basalt pore spaces (Macente 
et al., 2022) among others. We calculate the specific surface area s of the particle packs using a marching cubes 
algorithm (Lorensen & Cline, 1987) from Python's scikit-image toolbox (following Lewiner et al., 2003). This 
workflow yields the permeability k, the specific surface area s, and the melt fraction ϕm, allowing explicit vali-
dation of Equation 4.

The aim of this study includes testing the robustness of the specific surface area model in Equation 2 applied to 
natural shapes to show that the permeability model (Equations 3 and 4) can be used without explicitly measuring 
s. Here, we measure the specific surface area directly from the 3D volume of the numerical domains, but this is 
not always accessible to all users of permeability models. We aim to test Equation 2 so that any users can approx-
imate the shape of anisotropic crystals/particles in loosely packed systems if they do not have access to the X-ray 
CT scanning methods used here. To achieve this part, we added a processing step in Avizo© wherein we apply a 
separation algorithm to the binary solid-liquid volumetric data. This step separates each particle into individual 
entities form which we can obtain the principal orthogonal axes length a, b, and c as well as 3D shape parameters. 
The three independent length scales can then be used to approximate particle shape without a priori knowledge 
of the specific surface area s.

3.2. Methods to Additionally Test the Effect of Surface Roughness

Although the scans we collected are sufficient to accurately resolve particle edges and surfaces, we can also 
numerically roughen the surface of the particles of the binary volumetric data by a factor f, applying a rescale 
algorithm to the data sets without an anti-aliasing filter. This step effectively combines locally adjacent voxels 
to produce lesser quality data where the surface is less smooth and thereby generating new particle shapes 
(Figure 2). The down sampling process is performed using scikit-image toolbox, from f = 1 to f = 0.10 where the 
value f = 1 represents no down sampling applied and the value f = 0.10 represents the volumetric domain that has 
been down sampled by a factor 10. We apply the same workflow in LBflow to each roughened data set to deter-
mine the permeability k and the specific surface area s. Our data show the efficacy of the scaling process applied 
to particles with non-smooth edges, but we acknowledge that this cannot readily be used without prior knowledge 
of s because the particles at low-f are non-cuboidal (Figure 2d). While Equation 2 is not strictly valid when the 
particles are non-cuboidal, the relationship k ∝ s −2 given by Equation 1 can still be tested.

3.3. Analysis Philosophy and Extrapolation

Across all of our samples/scans, we cover the porosity range 0.35 ≲ ϕm ≲ 0.39. While this is a relatively small 
range of porosity (or melt fraction), we supplement the primary data sets presented here with data from Bretagne 
et al. (2023) which covers a wider range of porosity, albeit for idealized cuboid particles. We also consider data 
for randomly packed hard spheres from Vasseur et al. (2021). Taken together, these data sets cover a wide range 
of porosity so as to represent a thorough test of our model (see Section 2). While this model has been tested to 
some extent by Bretagne et al. (2023), we emphasize that the model has only been tested on idealized particle 
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systems and the effects of imperfect cuboid shapes, rough particles, and heterogeneities inherent in natural data 
have not been accounted for or tested. Here, our samples and analysis protocols aim to test the limits of the model 
in the case of these imperfections or points where the relatively simple geometrical assumptions of the model are 
invalidated.

The primary philosophy of the down-sampling method increasing surface roughness (Section 3b) is not to replicate 
any particular natural case (although we do envisage that mush-hosted crystals are not perfect smooth cuboids). But 
instead, that protocol is designed to test/demonstrate that Equation 1 is highly effective when s is known a priori.

4. Results and Analysis
The geometry of the fudge bits is cubic or cuboidal with relatively smooth-edges compared with the sugar parti-
cles which are anisometric and rough-edged (Figure 1); and represent a variable and harsh test of the simple 
models presented in Section 2. We test both the universal dimensionless permeability model (Equation 4) as 
well as the dimensional model with different methods of predicting s. In all cases, raw data for k, s, and ϕ are 
given in Table 1. k is determined in all three principal directions, however we discuss the results of the average of 
those values and use the standard deviation on that average to compute uncertainties via a standard error (e.g., in 
Figure 3). While the melt fraction range is only 0.35–0.39, the models we test are theoretical or semi-empirical 
and not subject to fitting parameters, hence if the models are validated for this melt fraction range, we can 
consider this a validation for a wider range of ϕm than explicitly tested here.

4.1. Results Using the Measured Specific Surface Area

The output values of the permeability k can be used with the measured s and ϕm to define the dimensionless 
permeability 𝐴𝐴 𝑘𝑘 = 𝑘𝑘𝑘𝑘2∕(2𝐶𝐶(1 − 𝜙𝜙𝑚𝑚)) , equivalent to Equation 4. By normalizing the permeability data k by the 
Stokes permeability ks, thereby making the data dimensionless, we isolate the effect of the melt fraction ϕm on the 
permeability. In Table 1, the permeability data shows variations of up to 2.5 orders of magnitude for a relatively 
small melt fraction range (0.05), however once normalized to 𝐴𝐴 𝑘𝑘 , the data collapse to a cluster relatively close 

Figure 2. An example output from the roughening algorithm for (a) f = 1 (i.e., the domain as measured), (b) f = 0.50, (c) 
f = 0.25, and (d) f = 0.10 applied to the sugar crystals data set. The values on the x- and y-axes are the voxel counts.
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to the model with C = 5 (Röding et al., 2020; Figure 3a), regardless of whether the data have been roughened 
(f < 1) or not (f = 1). This demonstrates that the roughening does not affect the universality of Equation 4 when 
s is known. If we let C be an adjustable parameter, we can use a least-squares regression technique to minimize 
for the best-fit value of C. Given the relatively small differences in ϕm across all data, this is done by minimizing 
for the logarithm of the 𝐴𝐴 𝑘𝑘 data. We perform this minimization using all data (including the numerical cuboid 
data from Bretagne et al. (2023) or with each data set individually (Table 2, Figure 3b) and show the result with 
the best-fit C for the combination of the fudge and sugar crystals (i.e., C = 4.01 ± 0.24). Zoomed in, the data 
fall closer to the model using C = 4.01 (Figure 3b). However, regardless the value of C, the slope of the data in 

Name Shrinking factor Melt fraction Specific surface area (m −1) Perm x (m 2) Perm y (m 2) Perm z (m 2)

Fudge bits 1.000 0.365 34390.27 1.18 × 10 −11 1.11 × 10 −11 1.54 × 10 −11

0.500 0.354 55853.46 3.02 × 10 −12 3.93 × 10 −12 3.68 × 10 −12

0.333 0.350 82000.75 1.42 × 10 −12 1.74 × 10 −12 1.68 × 10 −12

0.250 0.354 99901.65 9.39 × 10 −13 1.09 × 10 −12 1.14 × 10 −12

0.200 0.350 125451.00 6.02 × 10− 13 6.80 × 10 −13 7.14 × 10 −13

0.100 0.354 212487.90 1.99 × 10 −13 2.13 × 10 −13 2.41 × 10 −13

0.067 0.349 297233.20 9.73 × 10 −14 1.02 × 10 −13 1.17 × 10 −13

0.050 0.353 370835.00 6.54 × 10 −14 6.81 × 10 −14 7.90 × 10 −14

Sugar crystals 1.000 0.375 59397.05 3.34 × 10 −12 3.38 × 10 −12 3.70 × 10 −12

0.500 0.390 105453.30 1.17 × 10 −12 1.23 × 10 −12 1.22 × 10 −12

0.333 0.383 154884.90 5.06 × 10 −13 5.37 × 10 −13 5.46 × 10 −13

0.250 0.390 196884.20 3.19 × 10 −13 3.38 × 10 −13 3.46 × 10 −13

0.200 0.384 242223.30 2.01 × 10 −13 2.13 × 10 −13 2.20 × 10 −13

0.100 0.391 427365.30 6.99 × 10 −14 7.45 × 10 −14 7.71 × 10 −14

0.067 0.383 588604.00 3.80 × 10 −14 3.99 × 10 −14 4.21 × 10 −14

0.050 0.390 721765.10 2.77 × 10 −14 2.94 × 10 −14 3.07 × 10 −14

Table 1 
Raw Data for Permeability in the 3 Directions, the Specific Surface Area, Shrinking Factor, and Melt Fraction

Figure 3. The normalized permeability 𝐴𝐴 𝑘𝑘 as a function of the inter-particle phase volume fraction ϕm with measured s. (a) The data from this study with roughened 
particles f < 1 values and non-roughened particles at f = 1. (b) A zoom-in on the data from panel (a) and including the best-fit Equation 4. Also shown are the data from 
Bretagne et al. (2023) for cuboid simulations, and the model (Equation 4) with C = 5 and for a best fit value of C = 4.01. For comparison, we also show hard sphere 
simulations from Vasseur et al. (2021, 2022), as well as the dilute permeability model which determines the prediction of Equation 4 from moderate ϕm.
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Figure 3 matches well the Equation 4 prediction. We note that the variability of best-fit C is small and typically 
within minimization error of our expected C = 5 value. Therefore, for this small range of ϕm, we consider C to be 
a constant regardless of particle shape.

For comparison, Figure 3a also shows the data for hard sphere simulations and an associated model specifi-
cally for the permeability of hard spheres in a dilute system (Vasseur et al., 2021, 2022). This is shown here for 
completeness, and to demonstrate that solutions for spherical particles can, if scaled correctly, provide similar 
universal results as those for anisometric particles such as cuboids, fudge, and sugar.

4.2. Using the Cuboid Approximation to Find the Specific Surface Area

While Equation 4 appears effective across all data sets when s is a measured quantity, we acknowledge that in 
most practical scenarios of interest, s is not readily measured. However, instead, the axes lengths and shape of 
crystals can be measured in 2D, or in 3D, more easily. Therefore, next we aim to test our model when we take 
crystal axis lengths to predict an idealized s value, rather than taking the measured s.

The measured a-, b-, c-axes for each particle are used to define the specific surface area of each via Equation 2, 
and because there is a distribution of axis lengths in each sample, we then take an average of each of these which 
we term 〈a〉, 〈b〉, and 〈c〉, respectively. The standard deviation σ on each of those averages is set as the error on the 
axis length distributions (σa, σb, and σc). For the fudge chunks, N = 79 and for the sugar crystals, N = 361. These 
are used to determine s and an uncertainty on s (using Equation 2), assuming that this represents an approximate 
s from the average crystal shape in the pack. The output of these steps is a value for ks derived from the crystal 
shape determinations, and which can be used to compute 𝐴𝐴 𝑘𝑘 for each sample. We test this with the un-roughened 
data at f = 1 because the approach here relies on the data being close to cuboidal and smooth.

In Figure 4 we show the result of the steps outlined above for the pack of fudge chunks and the pack of sugar crystals. 
Figure 4a shows the normalized count distribution of the crystal size for each sample. In Figure 4b, we show the result 
of the computation of the permeability k. We do this in dimensional space (i.e., k and not 𝐴𝐴 𝑘𝑘 ; using Equation 3 and not 
Equation 4). The difference between the data computed using the cuboid approximation, and the same data for which 
s is measured directly is a difference of less than 0.5 log units of k in the case of both the sugar crystals and fudge 
chunks. We conclude therefore that any prediction made using the model presented here (Equation 3) with a cuboid 
approximation for the specific surface area, can be accurate to within 0.5 log units when C = 4.01.

5. Discussion
Here we explore and extend our results in a few key ways. First, we provide the limits of applicability of our 
models. Second, we propose a method to find the permeability from a 2D thin section of a cumulate rock for users 
that do not have access to 3D scans. And third, we explore the implications of our findings for real mush systems.

5.1. The Limits of Applicability at High and Low Melt Volume Fraction ϕm

Like all scaling approaches, the model tested here has limits beyond which it should not be applied. The limits 
as ϕm → 1 are best understood by comparing the prediction of Equation 4 with those given by the dilute expan-
sions of ks (i.e., the “Stokes permeability”). These two competing predictions converge at the range of ϕm that 
packed particles used here occupy (see Figure 4). However, as particle packing densities ϕ drop (i.e., as ϕm 

Sample family Best fit C 95% confidence interval 99% confidence interval

Cake topping data (n = 16) 4.01 ±0.24 ±0.33

Fudge chunks only (n = 8) 3.79 ±0.37 ±0.53

Sugar crystals only (n = 8) 4.24 ±0.25 ±0.37

Square-ended cuboids (Bretagne et al., 2023; n = 92) 5.83 ±0.10 ±0.14

All above data (n = 108) 5.52 ±0.17 ±0.22

Table 2 
The Results of Fitting for the Coefficient C in Equation 4
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increases) the dilute expansion model fits better. The point at which our universal model and the dilute model 
diverge substantially (ϕm ≥ 0.6) provides a good upper limit of applicability of Equation 4, and  is consistent 
with arguments given in Vasseur and Wadsworth (2017). Using Equation 4 at ϕm ≥ 0.6 will overestimate the 
permeability of mush. The limits as ϕm → 0 below which Equation 4 should not be used is formally given by the 
maximum random close packing of particles, which occurs at a particle volume fraction ϕ′. Bretagne et al. (2023) 
propose a functional form for this value as a function of the aspect ratio of square-ended cuboids. However, here, 
with triaxial cuboids, this function is not strictly valid and ϕ′ is not well known. At ϕ > ϕ′ magma mush is no 
longer “loose” and some intergrowth, overgrowth, or deformation of the crystals must have occurred (Bretagne 
et al., 2023; Holness, 2018). The lowest ϕm determined by Bretagne et al. (2023) was approximately ϕm = 0.35 
and therefore we consider this value the lower limit of applicability of the model presented here (Equation 4). 
Based on these arguments, the model applicability window is 0.35 ≤ ϕm ≤ 0.60. Below these limits, a percolation 
model is required (e.g., Martys et al., 1994; Vasseur et al., 2021, 2022; Vasseur & Wadsworth, 2017; Wadsworth 
et al., 2016), and above these limits a dilute expansion model is required (Sangani & Acrivos, 1982; Vasseur 
et al., 2021, 2022).

5.2. Finding a Permeability From a 2D Thin Section

Using standard petrological methods, it is rare to have the kind of 3D data presented here, especially for silicic 
magmas. The most widely used X-ray computed tomography (XCT) methods can be highly effective when there is 
an attenuation contrast between the “crystal” and “melt” phases. In our analogue samples, the interstitial volume 
was air, and so the high attenuation contrast makes segmentation of phases easy, and ϕm allows easy separation 
of the individual particles. In natural cumulate samples—an erupted and quenched piece of magma mush—the 
interstitial melt can solidify or crystallize into the same phases as the mush (e.g., Humphreys, 2009; Morse, 1998; 
Wager et al., 1960), or into phases with only a small attenuation contrast, making the segmentation and separation 
processes challenging. More advanced phase contrast XCT and diffraction contrast tomography that can support 
effective image analysis for samples with low contrast are becoming more accessible. 2D analytic techniques 
such as thin section microscopy, on the other hand, are far more common. Hence, in this section we develop a 
methodology for users who only have access to 2D quantitative data to obtain accurate permeability predictions.

The size and shape values of crystals can be acquired from the 2D data (here a numerically generated thin 
section). Then 2D-to-3D conversion algorithms can be used to reconstruct 3D shapes (Mangler et  al.,  2022; 
Morgan & Jerram, 2006). Once one obtains the three orthogonal axes of the particle shapes, the permeability 
model (Equation 3) can be applied to predict the permeability of a natural mush. To test this workflow, first, we 

Figure 4. (a) The distribution of crystal lengths in the fudge chunks sample, and the sugar crystal sample. (b) The permeability of the fudge chunks and the sugar 
crystals using two methods: (1) using the measured s (as given in Figure 3); and (2) using s predicted by the cuboid approximation using the mean values given in panel 
(a) and the associated errors.
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define a 2D “slice” through the 3D volumes to generate a virtual thin section. This method effectively cuts the 
crystals in a plane and, depending on the orientation of the crystals, will result in a distribution of intersection 
length-scales (Figure 5). We then extract the orthogonal maximum and minimum axis lengths (the maximum 
and minimum Feret diameters) of each particle that we can observe in the 2D plane, which we term wi and li, 
respectively (Figures 5a and 5c). As these 2D slices are virtual, we can produce multiple thin sections in many 
orientations and locations within the larger sample, effectively generating many pseudo-thin section data sets 
(Figure 5b). The distributions of the measured wi/li ratios (Figures 5d and 5e) cannot be used directly with Equa-
tion 2, because their relationship to a, b, and c (the three “true” axes) of the 3D objects needs to be established.

To estimate the true axis lengths and allow direct application of our model, we use ShapeCalc (Mangler 
et al., 2022), which enables the projection of the distribution of wiandli measured on a 2D data set into their esti-
mated 3D crystal shape. This model yields normalized axis lengths s, the small axis, i, the intermediate axis, and 
l, the long axis. These represent the true axis lengths a, b, and c normalized to a, such that s = a/a = 1, i = b/a 
and l = c/a. Higgins (1994) demonstrated that for a population of randomly oriented anisotropic 3D objects of 
same size and shape, the intersection long axis li is close to the true intermediate axis b and the intersection short 
axis wi is close to the true short axis a. Therefore, li ≈ b or wi ≈ a. If we assume a = wi, then we have b = iwi 
and c = lwi.

Applying this workflow, we can then apply Equations 2 and 4 to the 2D virtual section data. We find that this 
approach works very well (Figure 6), and the propagated uncertainty on the output permeabilities is within error 
of both the model (Equation 3) and the measured result from LBflow with the marching cubes algorithm to find 
s. This demonstrates that our model, coupled with ShapeCalc, can be used to convert 2D thin section observations 
of packed crystal geometries, into a bulk material permeability for individual cumulate samples.

Figure 5. The process of taking a layer of 3D particles and generating a 2D slice and associated 2D w and l data. (a) An example of a 2D slice from the stack of slices. 
(b) A 3D render of fudge chunks with a sequence of 2D “virtual sections” cut through it. (c) Defining the cuboid axis in 3D and in 2D. Panels (d) and (e) show the 
associated distributions of the ratio wi/li that are found from analyzing the shapes in panels (a) and (b), respectively. Also shown in panels (d) and (e) are the best-fit 
ShapeCalc (Mangler et al., 2022) distributions of cuboid cuts, which relates to a best-fit single cuboid shape.
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5.3. Natural Magma Mush

Equations  1, 3, and  4 are all isotropic models that do not predict a full 
permeability tensor, nor a permeability that depends on shear strain in any 
manner. This is consistent with the widely used models that are embedded 
in magma mush melt migration solutions (Bachmann & Bergantz,  2004; 
Jackson et al., 2018) and indeed in general formulations for melt migration 
in analogous partially molten systems (e.g., McKenzie,  1984) or compac-
tion of crystal-rich plugs even in flowing systems (e.g., Lecampion & 
Garagash,  2014). However, the melt percolation and extraction timescales 
from mush predicted from these extraction models are often many orders 
of magnitude in timescale slower than recorded by chronometers that track 
extraction processes (e.g., Holness, 2018). This has led to models that invoke 
shear strain and a resultant anisotropy development driving high permeability 
in one direction, perhaps at the expense of efficient permeable channels in 
the perpendicular direction (Liu & Lee, 2020), and large-scale simulations 
of mush dynamics that show kinematics involve the definition and evolu-
tion of a fabric tensor (Bergantz et  al.,  2017). This fabric tensor could be 
used to compute a local but volume-averaged permeability tensor description 
(Bergantz et al., 2017). In any anisotropic model, the scaling for permeabil-
ity via a scalar specific surface area (e.g., Equation 1) will not hold, or will 
require additional scaling via a fabric deformation correction.

While our model is not applicable to anisotropic systems, our approach 
grounds solutions in the specific microstructures of mushes, accounting for 
the complex crystal morphologies involved, and so provides a clear direc-
tion for developing the anisotropic models, from readily producible textures 
produced easily in a laboratory setting and amenable to XCT techniques. Our 
model formulation is specific to what we term “loose mush” (see Section 1). 

That is, mush for which crystal-crystal intergrowth or overgrowth is minimal, and for which the mush is isotropic 
and simply analogous to crystals at their maximum random close packing fraction. Therefore, a tenable future 
step would be to extend these models to overlapping cuboid systems where ϕm can drop to values below the 
limits explored here (see Section 5a). Indeed, for overlapping objects in a volume, ϕm can drop to a critical value 
below which the system as a whole becomes impermeable—termed the percolation threshold ϕc (Colombier 
et al., 2020; Vasseur & Wadsworth, 2017; Wadsworth et al., 2021). This parameter has not been determined for 
systems of magma mush, but constraint of this critical percolation property, as well as s down to low-ϕm would 
allow permeability models to be extended down from the “loose mush” regime into the “intergrown mush” 
regime.

5.4. Applying This Model

We suggest that our model can be applied to scenarios where the melt fraction is relatively high such that 
crystals are at their maximum packing, but not [yet] intergrown or overgrown. In that high melt fraction range, 
there are two basic modes of application of our model. First, if the specific surface area of a sample can be 
determined a priori, then Equation 1 can be applied directly using C = 5. This mode of application is antici-
pated to be possible where a user has access to 3D XCT of a mush, and can use algorithms similar to those  used 
here to both isolate the crystal framework and to determine the specific surface of that crystal framework. 
However, where this is not possible, the second basic mode of application is to make a cuboidal assumption 
about the crystal shapes and to constrain the size of the mutually perpendicular axes. We demonstrate that an 
average of a population of crystal axis sizes performs well. Then, using Equation 3, the user can estimate the 
permeability. Based on this work, the uncertainty associated with the first mode of application may be 0.1 log 
units, whereas the uncertainty on the second mode of application may be up to 0.5 log units. Finally, if the 
crystals are especially rough or deviate from cuboidal, then an independent measure of the specific surface 
area will be required. However, once known, we show that Equation 1 is effective in this range of melt fraction 
regardless of the specific surface, the roughness, or the particle shapes.

Figure 6. The results of the 2D-to-3D approach outlined here, compared 
with the direct result from LBflow shown in Figure 4 and the model given by 
Equation 3. The difference between the data from LBFlow and the projected 
2D slice data (lozenges) is only of 0.07 orders of magnitude and 0.11 orders 
of magnitude for the fudge bits and the sugar crystals, respectively. The 
difference between the data from LBFlow and the projected 2D all slice data 
(triangles) is only of 0.10 orders of magnitude and 0.12 orders of magnitude 
for the fudge bits and the sugar crystals, respectively. The uncertainty on k in 
the 2D-to-3D method arises from propagating the uncertainty on a, b, and c 
from the standard deviation of wi and li, which can be substantial.
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6. Conclusions
In this contribution, we have expanded the relatively simple biaxial cuboid model presented in Bretagne 
et al. (2023) to account for the triaxial nature of natural crystal shape. We have validated that expanded form of 
the model using real XCT data for mush analogs, and identified the need for a minor adjustment of the constant C 
(albeit with reasonable efficacy for the forward model with C = 5). We have also shown that the model is accurate 
to within 0.2–0.5 log units when the axes of particles approximated from 2D thin section derived measurements; 
opening up the possibility that mush permeability can be extracted as part of a general petrological workflow in 
any laboratory.

As with Bretagne et al. (2023), we emphasize that the permeability model presented here can be orders of magni-
tude different from existing approaches. While our model (Equation 3) is similar in form (and based on the same 
starting point) as the Kozeny-Carman model given in Bachmann and Bergantz  (2004), the shape-dependence 
of permeability that we apply renders the predictions of our model dramatically different from those of 

𝐴𝐴 𝐴𝐴 = 𝜙𝜙𝑚𝑚
3𝑎𝑎2∕

(

150(1 − 𝜙𝜙𝑚𝑚)
2
)

 with a fixed single crystal “size” a. Therefore, we propose that not only does our 
model include the effect of crystal shape, which should be incorporated in mush permeability models, but it 
also gives higher permeability predictions than existing approaches. If embedded in any existing melt migration 
model, the higher permeabilities predicted here would result in greater fluxes and shorter overall transport times-
cales for a given set of conditions. Therefore, there are direct implications of our result for crustal melt movement 
models.

Data Availability Statement
All raw and processed permeability data and processed X-ray 3D data pertaining to this manuscript are provided 
in Bretagne et al. (2023) and available for download from https://doi.org/10.5281/zenodo.8349055. The software 
Avizo© is available by industrial paid license.
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