Amani Almohaimeed
A Sequential Cross-Sectional Analysis Producing Robust Weekly COVID-19 Rates for South East Asian Countries
Almohaimeed, Amani; Einbeck, Jochen
Abstract
The COVID-19 pandemic has expanded fast over the world, affecting millions of people and generating serious health, social, and economic consequences. All South East Asian countries have experienced the pandemic, with various degrees of intensity and response. As the pandemic progresses, it is important to track and analyse disease trends and patterns to guide public health policy and treatments. In this paper, we carry out a sequential cross-sectional study to produce reliable weekly COVID-19 death (out of cases) rates for South East Asian countries for the calendar years 2020, 2021, and 2022. The main objectives of this study are to characterise the trends and patterns of COVID-19 death rates in South East Asian countries through time, as well as compare COVID-19 rates among countries and regions in South East Asia. Our raw data are (daily) case and death counts acquired from “Our World in Data”, which, however, for some countries and time periods, suffer from sparsity (zero or small counts), and therefore require a modelling approach where information is adaptively borrowed from the overall dataset where required. Therefore, a sequential cross-sectional design will be utilised, that will involve examining the data week by week, across all countries. Methodologically, this is achieved through a two-stage random effect shrinkage approach, with estimation facilitated by nonparametric maximum likelihood.
Citation
Almohaimeed, A., & Einbeck, J. (2023). A Sequential Cross-Sectional Analysis Producing Robust Weekly COVID-19 Rates for South East Asian Countries. Viruses, 15(7), Article 1572. https://doi.org/10.3390/v15071572
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 16, 2023 |
Online Publication Date | Jul 18, 2023 |
Publication Date | 2023-07 |
Deposit Date | Oct 10, 2023 |
Publicly Available Date | Oct 11, 2023 |
Journal | Viruses |
Electronic ISSN | 1999-4915 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 15 |
Issue | 7 |
Article Number | 1572 |
DOI | https://doi.org/10.3390/v15071572 |
Public URL | https://durham-repository.worktribe.com/output/1789031 |
Files
Published Journal Article
(1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
You might also like
Biodose Tools: an R shiny application for biological dosimetry
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search