Graham A Cooper
Electron impact resonances of uracil in an aqueous environment from anion photoelectron imaging
Cooper, Graham A; Clarke, Connor J; Verlet, Jan R R
Abstract
The effect that solvation has on electron attachment to uracil, U, was studied by probing the electronic resonances of the uracil radical anion, U−, in gas-phase water clusters, U−(H2O)n, using photoelectron imaging across a range of photon energies. Specifically, the π3* shape resonance was probed in detail and the spectral signatures following excitation to this resonance are considered. Several new methods for analysis are provided to capture the different actions of the resonance on the photoelectron emission, which in turn provide insight into the location of the π3* resonance and its subsequent dynamics. The effect of solvation on each action observed through the photoelectron emission is studied for n ⩽ 10. We find that the actions—be they related to statistical emission, prompt autodetachment, or the photoelectron angular distributions—all become less sensitive as the cluster size increases, suggesting that their use for very large clusters may be limited. Additionally, we consider the correlation between electron detachment from the anion, as probed in the experiments, and electron attachment to the neutral. Specifically, they are linked through the reorganisation energy in a linear response picture and we show how the cluster approach developed here allows one to decompose the total reorganisation energy into intramolecular (associated with the anion to neutral geometry change in U) and intermolecular (associated with the change in hydration sphere) contributions. For U in a bulk aqueous environment, we find that the total reorganisation energy, λ ∼ 1.2 eV, shows equal contributions from both intra- and intermolecular changes.
Citation
Cooper, G. A., Clarke, C. J., & Verlet, J. R. R. (2023). Electron impact resonances of uracil in an aqueous environment from anion photoelectron imaging. Journal of Physics B: Atomic, Molecular and Optical Physics, 56(18), Article 185102. https://doi.org/10.1088/1361-6455/acf353
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 23, 2023 |
Online Publication Date | Sep 7, 2023 |
Publication Date | Sep 28, 2023 |
Deposit Date | Sep 19, 2023 |
Publicly Available Date | Sep 19, 2023 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Print ISSN | 0953-4075 |
Electronic ISSN | 1361-6455 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 56 |
Issue | 18 |
Article Number | 185102 |
DOI | https://doi.org/10.1088/1361-6455/acf353 |
Keywords | Condensed Matter Physics; Atomic and Molecular Physics, and Optics |
Public URL | https://durham-repository.worktribe.com/output/1741603 |
Files
Published Journal Article
(1.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
You might also like
Low-Energy Shape Resonances of a Nucleobase in Water
(2022)
Journal Article
Predicting the increase in electron affinity of phenoxy upon fluorination
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search