Scott Hagen scott.hagen@durham.ac.uk
PGR Student Doctor of Philosophy
Estimating black hole spin from AGN SED fitting: the impact of general-relativistic ray tracing
Hagen, Scott; Done, Chris
Authors
Professor Christine Done chris.done@durham.ac.uk
Professor
Abstract
Accretion disc model fitting to optical/UV quasar spectra requires that the highest mass black holes have the highest spin, with implications on the hierarchical growth of supermassive black holes and their host galaxies over cosmic time. However, these accretion disc models did not include the effects of relativistic ray tracing. Here, we show that gravitational redshift cancels out most of the increase in temperature and luminosity from the smaller radii characteristic of high spin. Disc models which include the self-consistent general relativistic ray tracing do not fit the UV spectra of the most massive quasars (log M/M⊙ ≥ 9.5), most likely showing that the disc structure is very different to that assumed. We extend the relativistic ray tracing on more complex disc models, where the emission is not limited to (colour-temperature-corrected) blackbody radiation but can instead be emitted as warm and hot Comptonization. We demonstrate this on the broad-band (UV/X-ray) spectrum of Fairall 9, a local intensively monitored ‘bare’ active galactic nucleus (no significant intrinsic cold or warm absorption). We show that including relativistic corrections does make a difference even to these more complex models, but caution that the inferred black hole spin depends on the assumed nature and geometry of the accretion flow. Additionally, we make our model code publicly available, and name it RELAGN.
Citation
Hagen, S., & Done, C. (2023). Estimating black hole spin from AGN SED fitting: the impact of general-relativistic ray tracing. Monthly Notices of the Royal Astronomical Society, 525(3), 3455-3467. https://doi.org/10.1093/mnras/stad2499
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 15, 2023 |
Online Publication Date | Aug 21, 2023 |
Publication Date | 2023-11 |
Deposit Date | Sep 12, 2023 |
Publicly Available Date | Sep 12, 2023 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 525 |
Issue | 3 |
Pages | 3455-3467 |
DOI | https://doi.org/10.1093/mnras/stad2499 |
Public URL | https://durham-repository.worktribe.com/output/1735298 |
Files
Published Journal Article
(1.7 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
The Peculiar Bursting Nature of CP Pup
(2024)
Journal Article
Wavelength dependences of the optical/UV and X-ray luminosity correlations of quasars
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search