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A B S T R A C T   

A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on 
solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally, 
different percentages of green hydrogen have been blended with natural gas to examine the techno-economic 
performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises 
steadily as the hydrogen blending percentage rises from 0% to 20%, then slightly drops at 50% H2 blending, and 
then rises steadily again until 100% H2 supply. The system’s minimal levelised cost of energy was calculated to 
be 4.64 £/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable 
quantity of data that was received from the simulation model. Heat, power, and levelised cost of energy estimates 
using the ANN model were found to be extremely accurate, with coefficients of determination of 0.99918, 
0.99999, and 0.99888, respectively.   

1. Introduction 

Climate change, which was brought on by millennia of unchecked 
greenhouse gas (GHG) emissions, is one of today’s most pressing issues. 
The immediate result is an increase in air temperature, which has a 
number of permanent repercussions on the environment. According to 
the Paris Agreement, which aims to limit the rise in the average world 
temperature to a maximum of 2◦C over pre-industrial levels, numerous 
decarbonisation strategies have been devised to minimise these conse-
quences [1]. A move toward a hydrogen economy is one of the various 
strategies to reduce CO2 emissions. The expense of building a distribu-
tion system for hydrogen is one of the biggest barriers to its use as an 
energy carrier. Several research suggested utilising the already wide-
spread natural gas (NG) system to get around this problem. In the cur-
rent pipelines, hydrogen and clean natural gas can be combined. 

The integration of H2 into the natural gas network is being 
researched in a number of initiatives and has been described in literature 
as a means of accelerating the transition to a hydrogen economy [2]. 
This can be used as a way to decarbonise the UK’s electricity and district 
heating systems. One of the main benefits of hydrogen blending is that it 
allows for the gradual transition to a hydrogen-based energy system, 
without the need for major infrastructure changes. By blending 

hydrogen with natural gas, the existing gas grid can continue to be used, 
while reducing the carbon emissions associated with the use of natural 
gas. Blending hydrogen with natural gas in the existing gas grid can also 
be used as a way to store excess renewable energy. When excess 
renewable energy is generated, it can be used to produce hydrogen 
through electrolysis [3]. This hydrogen can then be blended with natural 
gas and injected into the gas grid for later use. Hydrogen blending can 
also be used in combination with fuel cells to provide low-carbon heat 
and power. Fuel cells can convert hydrogen and oxygen into electricity, 
with water as the only by-product. When blended with natural gas, the 
fuel cells can provide a reliable and low-carbon source of heat and 
power. 

Guandalini et al. [4] concentrated on the effects on high-pressure 
transport pipes by injecting uneven hydrogen-containing gas mixtures, 
Abeysekera et al. [5] studied the gas networks. De Vries et al. [6] looked 
into how natural gas/hydrogen mixes affected the functioning of 
outdated machinery and home appliances.. Hydrogen blended natural 
gas can be used in all natural-gas based residential applications (heating, 
cooking), stationary power generation applications (cogeneration and 
power production), and transportation applications with significant 
emission reduction benefits [7]. The infrastructure connecting produc-
tion, transmission, distribution, storage, and end users relies heavily on 
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the natural gas network [8]. It could also be used to store hydrogen [9], 
albeit the amount of hydrogen that can be stored depends on the cost of 
the hydrogen [10]. Variations in the final mixture’s energy content per 
unit volume present a significant challenge for applications using mixes 
of hydrogen and natural gas. Despite having a higher gravimetric energy 
density than NG (38.8 MJ/Nm3), hydrogen has a lower heating value 
(LHV) of just 11.89 MJ/Nm3. This is due to hydrogen’s extremely low 
density. In order to provide the same quantity of energy to the end user, 
the blended gas supplier should therefore deliver a larger volume that is 
based on the proportion of hydrogen in the mixture [11]. Additionally, 
because to the phenomena of hydrogen embrittlement, which is affected 
by hydrogen concentration and operating pressure, [12], an increase in 
hydrogen content could have an impact on the mechanical structure of 
the steel materials used in pipelines. Several pilot projects were inves-
tigated to evaluate the compatibility of gas mixes comprising 15–20% 
percentages of H2 without significantly altering the current gas network, 
with significant cost benefits in terms of deferred expenditure. At the 
same time there are numerous worries regarding potential pipe sealing 
leaks, which jeopardise public safety in cities [13]. The performance of 
integrated system, such as internal combustion engines or gas turbines, 
that are directly linked to the gas network has been the subject of 
numerous studies in the studies [14], and [6]. The majority of research 
show that using a methane/hydrogen combination in ICs can increase 
efficiency and decrease pollutant emissions [15–17]. To maintain high 
efficiency levels in turbines, this method entails significant and expen-
sive adjustments to the burners and to the operation parameters 
[18–20]. 

In this context fuel cell especially solid oxide fuel cell (SOFC) are 
coming out to be a very promising and emerging technology that can 
utilise the both the hydrogen and natural gas or mixture of the two as 
fuel without any much complexity or substantial modification on the 
power generation unit. SOFC is now emerging as a very energy efficient 
technique for power generation resulting from direct chemical conver-
sion of fuel to electricity [21]. When compared to other types of fuel cells 
and other conventional energy conversion tools, the key advantages of 
employing SOFC include fuel flexibility, operation without noise 
pollution, minimal environmental pollutants, and fewer corrosion is-
sues. Nevertheless, high-grade waste heat also comes out of SOFC as a 
by-product, which may be used in bottoming cycles [22]. A wide range 
of research has already been conducted on the investigation and eval-
uation of various SOFC based energy systems for efficient clean power 
generation. Wang et al. [23] have performed a techno-economic multi- 
objective optimisation of a tri-generation system combining SOFC, a 
transcritical CO2 cycle, a transcritical organic Rankine cycle, and a 
liquid natural gas (LNG) cold energy recovery system. The optimum 
exergy efficiency and cost of 56.1%, 16.82 $/h and 66.83%, 12.02 $/h 
have been reported for atmospheric SOFC system and pressurised SOFC 
system, respectively. Souza et al. [24] have carried out an economic 
assessment of a combined heat and power plant producing hydrogen and 
electricity via steam reforming SOFC system. In the study hydrogen cost 
of 2.42–5.26 USD/kg and cost of energy above 0.269 USD/kWh have 
been reported. Zhu et al. [25] have performed a multi-objective opti-
misation of a SOFC based combined cooling, heating and power (CCHP) 
system. It has been reported that the system at the optimum condition 
poses 75% CCHP efficiency, 52% electrical efficiency with a total annual 
cost of 410 k$. Majority of the studies related to the different integrated 
systems using SOFC are primarily based on single fuel fed system either 
by natural gas, or by methane, or by hydrogen or by biogas or syngas. 
Mejiaet al. [26] analysed the performance and emission characteristics 
of a SOFC with micro-combined heat and power (SOFC-mCHP) system 
using various proportions of the fuel mixture of hydrogen (H2) and 
natural gas (NG). Cinti et al. [7] have performed the detailed thermo-
dynamic analysis of SOFC-mCHP systems while running on fuel that 
ranges from pure hydrogen to pure methane via fuel mixes known as 
hythane. Veluswamy et al. [27] have carried out thermodynamic anal-
ysis followed by detailed parametric investigation of a SOFC stack using 

a mixture of bio-methane (biogas) and hydrogen, called biohythane, as 
an energy feedstock. Basso et al. [28] have carried out an experimental 
investigation of an internal combustion engine based m-CHP system for 
residential application using hydrogen-natural gas mixtures (H2NG) to 
show the energy and emission performance of the system. Bicer and 
Khalid [29] have carried out lifecycle analysis of a SOFC integrated 
combined heat and power generation system using natural gas, 
hydrogen, ammonia, and methanol as fuel input. Mehr et al. [30] have 
carried out thermodynamic and economic analysis on four diverse ar-
rangements of natural gas and biogas fuelled SOFC, concentrating on the 
impact of anode and/or cathode gas recycling. They observed that the 
thermal efficiency was 6.81% greater for the SOFC with cathode and 
anode recycling as compared to other arrangements running on natural 
gas. Overall, hydrogen blending is seen as a promising approach for 
decarbonising the UK’s electricity and district heating systems, as it al-
lows for a gradual transition to a hydrogen-based energy system, while 
utilising the existing infrastructure, and also it can be used as a way to 
store excess renewable energy and provide low-carbon heat and power. 

It is apparent from the literature that SOFC-powered CHP systems 
with H2 blending in natural gas can be a complex process due to the 
differences in properties between the fuels, such as lower energy content 
and a higher compressibility of hydrogen. Modelling the process would 
require knowledge of the properties of the gas mixture, and the specific 
conditions under which the operation is taking place [31]. This will 
undoubtedly necessitate a significant development in the levels of de-
pendency on the simultaneous control of several factors. Conventional 
modelling techniques are unable to identify the ideal range of design 
values with high conformance due to the increased number of input 
parameters, the absence of a linear relationship between input and 
output parameters, and the high computing cost [32]. Modelling para-
digms based on artificial intelligence (AI), such as Artificial Neural 
Network (ANN) [33,34] have a proven track record of success as trust-
worthy system identification tools with the innate capacity to precisely 
forecast the complicated non-linear interactions between the input and 
output parameters [35]. It creates a wide range of possibilities for 
building complicated SOFC-based CHP systems and other complex sys-
tems with improved flexibility for including noisy and nonlinear input 
[36,37]. The ANN can be trained using historical data from the SOFC to 
predict the optimal operating conditions for a given set of inputs and can 
then be used in real-time to control the SOFC and maximise its efficiency 
and performance. 

It can be seen from the above discussion that the detailed thermo-
dynamic and economic performance analysis of SOFC systems for large 
scale household power supply and district heat supply using natural gas 
blended with pure hydrogen as fuel has not been studied extensively. 
Furthermore, the overall techno-economic performance of a SOFC based 
system using full range variation of hydrogen blending, varying from 0% 
− 100%, with the natural gas is very rare in the literature. In addition to 
this, artificial neural network (ANN) based studies of a SOFC based 
power and district heating system using hydrogen blended natural gas 
for efficient decarbonisation of the power and heating demand of the UK 
energy sector have not been investigated in depth earlier, along with the 
consequences of variation with different design and operating parame-
ters of the SOFC unit and percentage (%) of fuel blending. This is also a 
first-of-its-kind study in the UK context. The current work aims to 
develop and successfully implement a reliable system by designing a 
comprehensive ANN model that will be used to assess the performance 
characteristics of a SOFC-CHP system. The novelty and major contri-
butions of the present work are as follows:  

• SOFC based cogeneration system for district heat network and power 
generation in UK context.  

• Preliminary feasibility study for blending of hydrogen with natural 
gas applied for fuel cell based system.  

• Techno-economic performance optimisation of a SOFC based district 
heat network system. 
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• Feasibility study of fuel cell-based pathway for decarbonisation of 
district heat network in the UK. 

2. System description 

SOFC based cogeneration system generating power and district 
heating was modelled, as depicted in Fig. 1. A SOFC stack, an after 
burner (AB), air preheater (AHE), air compressor (AC), fuel compressor 
(FC), fuel preheater (FHE), fuel and steam mixer (MIXER), heat recovery 
steam generator (HRSG) and freshwater pump (PUMP) are all included 
into the system. Here a typical design for a SOFC system operating at 
750◦C has been considered. The anode off-gas is completely oxidised in 
the after burner (AB), where the fuel gas flow and cathode outflow are 
united. Gases from the afterburner (AB) pass via the air and fuel pre-
heaters (AHE and FHE), which warm the incoming air and fuel before 
they enter the fuel cell stack and the mixer, respectively. The residual 
heat of the afterburner gases is recovered at the heat recover steam 
generator (HRSG) though production of superheated steam. The amount 
of steam is estimated by the steam to carbon ratio required for the 
reforming process. After producing the required amount of steam, the 
residual heat of the afterburner gas is utilised for the hot water gener-
ation at 75◦C to be supplied for the district heating as shown in the 
figure. The required amount of steam flow rate is forwarded through the 
evaporator and superheater section of the HRSG, and rest of the hot 
water is bypassed from the economiser section of the HRSG to be utilised 
for the district heating. The fresh water to the HRSG is supplied through 
a water pump as shown in the figure. The fresh air is compressed by the 
air compressor slightly above the atmospheric pressure (AC) before 
sending to the SOFC stack. On the other hand, hydrogen is mixed with 
the natural gas at different volume percentages and sent to the SOFC 
stack by the fuel compressor (FC). The amount of mixing of hydrogen 
fuel (volume percentage) has been varied from 0% (pure natural gas) to 
100% (pure hydrogen). For 100% hydrogen fuel input the proposed 
system does not require the steam for the reforming process in the SOFC 

stack. So, for this case no HRSG is required for steam generation. All the 
residual heat of the afterburner gases is recovered through a simple heat 
exchanger (water heater) for generating only hot water at 75◦C to be 
supplied for the district heating purpose. The system configuration re-
mains the same except the omission of the HRSG which is shown in the 
Fig. 2. 

3. System modeling 

3.1. Solid oxide fuel cell for power generation 

The solid oxide fuel cell (SOFC) is a high temperature fuel cell which 
generally operates at 650–1000◦C[21]. In this study the SOFC unit is 
considered to operate at 850◦C. SOFCs are highly efficient electro-
chemical devices which consume hydrogen or methane of natural gas as 
fuel and converts into electricity without direct combustion of fuel. 
Among different types of SOFC, an internally reformed type SOFC is 
considered here for this study. For the present analysis a lumped volume 
zero-dimensional approach has been followed to do the mass and energy 
balances at the SOFC unit. Thermo-physical properties and chemical 
composition of the fuel and air at the fuel cell inlet, fuel utilisation 
factor, oxidant utilisation factor, cell area, cell temperature, cell voltage 
are assigned as inputs to the model. After that the model estimates the 
temperature and pressure at the fuel cell outlet, electrical output, and 
the composition of the outgoing anode and cathode exhausts through 
overall energy balance at the fuel cell. 

The following relationship may be used to calculate current flow via 
SOFC [23]. 

IFC =
ṁanode,in ×

(
yH2 + yCO + yCH4

)
× 2 × F

Mmol,anode
(1) 

where, yH2 , yCO,yCH4 are representing the respective molar fraction of 
H2, CO and CH4 in the incoming gas at anode; F is the Faraday constant. 
The molar mass and the total mass flow rate of the incoming gas at the 

Fig. 1. Arrangement of the proposed system using pure natural gas or combining hydrogen.  
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anode channel is represented by Mmol,anode and ṁanode,in, respectively. 
The fuel utilisation factor (UF), which measures the actual fuel 

conversion to the greatest amount possible, is written as the following 
relation. 

UF =
I

IFC
(2) 

where, I denote actual current flow. 
The following equation may be used to calculate the SOFC voltage 

[38]. 

VSOFC =
ΔG
2F

+
RTSOFC

2F
ln
(y0.5

O2
× yH2

yH2O
× P0.5

SOFC

)

− I × RSOFC (3) 

where, RSOFC represents the overall resistance per unit area of SOFC; 
ΔG denotes Gibbs free energy; TSOFC is denoting the temperature at 
which the SOFC is working; similarly PSOFC denotes the pressure at 
which the SOFC is running; yH2O denotes mole fraction of H2O; yO2 is the 
mole fraction of O2, and R is the universal gas constant. 

The following estimations can be made for the power produced by 
SOFC modules [23]. 

WSOFC = NSOFC × j × ASOFC × VSOFC × ηinv (4) 

where, NSOFC is the cell numbers; j denotes the current density; ASOFC 

represents the cell area; ηinv is the inverter efficiency. 

3.2. Afterburner (AB) 

The fuel that is released from the anode of the solid oxide fuel cell 
provides a significant degree of heating value because not all of the fuel 
is consumed at the SOFC unit. Methane, hydrogen, and carbon monox-
ide are the fuel species that can be burned inside the afterburner. Uti-
lising the oxygen present at the cathode outlet stream, the fuels exiting 
the anode channel are totally burnt. The afterburner unit considers the 
following combustion reactions. 

CH4 + 2O2 ↔ CO2 + 2H2O (5)  

CO+
1
2
O2 ↔ CO2 (6)  

H2 +
1
2
O2 ↔ H2O (7) 

A straightforward energy balance equation has been used to deter-
mine the afterburner’s exit temperature. 

3.3. Air compressor (AC) 

The power consumed (WAC) by the air compressor is governed by. 

WAC = mair × (hout − hin) (8) 

where “m” stands for air mass flow rate and “h” stands for air’s 
specific enthalpy at the compressor’s input and exit, respectively. 

3.4. Air preheater (AHE) 

The air preheater’s energy balance equation is provided below. 

mafterbuner gas × (hin − hout) = mair × (hout − hin) × ηAHE (9) 

where ‘ηAHE’ denotes the effectiveness of the air preheater. 

3.5. Fuel compressor (FC) 

The power consumed (WFC) by the fuel compressor is governed by. 

WFC = mfuel × (hout − hin) (10)  

3.6. Fuel preheater (FHE) 

The fuel preheater’s energy balance equation is provided below. 

mafterbuner gas × (hin − hout) = mfuel × (hout − hin) × ηFHE (11) 

where ‘ηFHE’ denotes the effectiveness of the fuel preheater. 

3.7. Mixer 

The mass conservation at the mixer component is given by the 
following equation. 

mfuel +msteam = mmixture (12) 

Fig. 2. Layout of the proposed system running on only hydrogen.  
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Assuming no heat loss, the energy balance at the mixer component is 
estimated as the follows. 

(mfuel × hfuel)+ (msteam × hsteam) = (mmixture × hmixture) (13)  

3.8. Heat recovery steam generator / water heater 

The heat recovery steam generators and water heater’s energy bal-
ance equation are provided below. 

mafterbuner gas × (hin − hout) = mwater × (hout, steam − hin, water) × ηHRSG (14)  

mafterbuner gas × (hin − hout) = mwater × (hout, hot water − hin, cold water) × ηwater heater

(15) 

where ‘ηHRSG’ denotes the effectiveness of the HRSG, ‘ηwater heater’ de-
notes the effectiveness of the water heater. 

3.9. Energy performance modelling 

For the thermodynamic performance estimation of the investigated 
multigeneration energy hub the first law and second law efficiency have 
been estimated. 

The net total power output (Wnet) is estimated by the following 
equation. 

Wnet = WSOFC − WAC − WFC − Wwater pump (16) 

The amount of heat supplied to the district heat network (QDistrict heat) 
from the integrated system is estimated as follows. 

QDistrict heat = mwater × (hout, hot water − hin, cold water) (17) 

The total energy input (Qtotal) into the proposed cogeneration system 
has been estimated by the following equation. 

Qtotal = mNatural gas × LHVNatural gas +mhydrogen × LHVhydrogen (18) 

The energy efficiency of the proposed cogeneration system is esti-
mated as follows. 

ηenergy =
Wnet + QDistrict heat

Qtotal
(19)  

3.10. Exergy performance analysis 

Any working fluid stream’s exergy (EXG) is the sum of its physical 
and chemical exergy. Below is stated the mathematical formula for 
exergy. 

EXGstream = EXGphysical +EXGchemical (20) 

The physical exergy (EXGphysical) of the stream is estimated as given 
below. 

EXGphysical =
∑

y
(mf )y × ((hy − h0) − T0(sy − s0)) (21) 

where, ‘mf’ denotes the mole flow rate, ‘h’ denotes the specific 
enthalpy, ‘s’ denotes the specific entropy, ‘y’ denotes the yth species of 
the flow stream, ‘h0′ denotes the specific enthalpy at the reference 
condition, ‘s0′ denotes the specific entropy at the reference condition, 
‘T0′ denotes the reference atmospheric temperature in Kelvin scale. 

The chemical exergy (EXGchemical) of the stream is estimated as given 
below. 

EXGchemical =
∑

y
(mf )y ×

(∑
yi*ce0 + RT0

∑
yi*ln(yi)

)
(22) 

where, ‘ce0′ denotes the specific chemical exergy of the yth species, 
‘R’ denotes the universal gas constant. 

The proposed cogeneration system’s input exergy (EXGinput)rate is 
established by the following equation. 

EXGinput = EXGnatural gas + EXGhydrogen
=
(
EXGphysical + EXGchemical

)

natural gas +
(
EXGphysical + EXGchemical

)

hydrogen

(23) 

The proposed cogeneration system’s exergetic efficiency (ηexergy) has 
been estimated to be. 

ηexergy =
Wnet + EXGDistrict heat

EXGinput
(24) 

where, the EXGDistrict heat denotes the exergy value of the district heat 
supplied from the proposed cogeneration system and is estimated as 
follows. 

EXGDistrict heat = QDistrict heat ×

(

1 −
T0

Thot water

)

(25) 

where, ‘Thot water’ denotes the hot water temperature in Kelvin scale. 

3.11. Economic analysis 

The total capital cost (CAPEX) is the sum of all system components 
and is estimated as follows: 

CAPEX =
∑

j
CAPj (26) 

where, CAPi represents capital cost of jth component. 
The discount rate is set at 3% [39,40], and the lifetime is set at 30 

years. The annual cost of operation and maintenance is projected to be 
2.5% of CAPEX [41]. SOFC must be replaced on a regular basis in the 
system. Annual replacement expenses are expected to be 5% of CAPEX 
[41]. Table 1 includes the capital costs of several pieces of equipment as 
well as other important data for economic analysis. 

The total yearly cost of the system is the sum of the annual capital 
cost, annual operating and maintenance cost, annual replacement cost, 
and annual fuel cost, as stated in the following equation. 

COSTAnnual = CAPEXAnnual +OPEXAnnual +REPAnnual +FUELAnnual (27) 

The following equation may be used to calculate the system’s lev-
elised cost of energy (LCOE). 

LCOE =
COSTAnnual

Total Energy Production
(28)  

4. Artificial Neural Network (ANN) Modelling 

Artificial neural network tool learns from large data using biologi-
cally based computational model which includes linear or nonlinear 
computational elements termed as neurons [50]. In the current study, an 
ANN model was created to map the relationship between the inputs, 
such as the percentage of methane and hydrogen in the fuel, the per-
centage of hydrogen in the fuel, the current density, the percentage of 
fuel used, and the operating temperature of SOFC, and the outputs, 
energy efficiency, exergy efficiency, and LCOE. In this work, the 

Table 1 
Input parameters for economic analysis.  

Description Value Unit Ref. 

Solid oxide fuel cell for year 2020 and 2022 4500 €/kW [42] 
SOFC cost in year 2050 841 $/kW [43] 
Pump + Compressor + Heat Exchanger + Pipe works 202.5 $/kW [39] 
Hot water storage tanks 20 $/kW [44] 
Natural gas cost for year 2022 7.21 p/kWh [45] 
Natural gas cost for year 2020 2.46 p/kWh [45] 
Natural gas cost for year 2050 5.2 p/kWh [46] 
Green hydrogen cost in year 2020 2.5 $/kg [47] 
Green hydrogen cost in year 2022 2.3 $/kg [48] 
Green hydrogen cost in year 2050 1.15 $/kg [49]  
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objective functions were predicted using a multilayer feed-forward 
neural network model. For output neurons and hidden neurons in the 
chosen multilayer feed-forward network, a continuous, differentiable 
log-sigmoid activation function was adopted. 625 data sets were taken 
into account for the ANN model’s various input parameters and design 
goals. Out of these big data sets, 70% are chosen for the neural network’s 
training, 15% are chosen for cross-validation, and the remaining 15% 
are chosen for the trained network’s testing. The coefficient of deter-
mination (R2) has been taken into consideration in order to assess the 
effectiveness of the ANN model, and it is defined by the following 
relation [51]. 

R2 = 1 −

(∑n
i=1(ti − oi)
∑n

i=1(oi)
2

)

(29) 

where “t” stands for the actual output, “o” stands for the predicted 
output value, and “n” stands for the number of patterns in the data set. 

The values of R2 above 95% and higher are considered that the model 
is significant. 

Since Mean Square Error (MSE) has the incredibly desirable char-
acteristics of differentiability, convexity, and symmetry, it is also 
selected as the loss function to be minimised because it is an effective 
statistical indicator for model accuracy verification. Back-propagation 
neural networks with the Levenberg-Marquardt learning algorithm are 
taken into account in this model because it is highly recognised for 
making accurate predictions [51]. 

Other important statistical error measurement parameters, such as 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 
(MAPE), have also been estimated. The RMSE and MAPE can be defined 
by the following relations [32,52]. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ti − oi)

2

√

(30)  

MAPE =
1
2
∑n

i=1

(⃒
⃒
⃒
⃒
ti − oi

oi

⃒
⃒
⃒
⃒

)

× 100 (31) 

In the present ANN model, up to two hidden layers with ‘2 to 25′ 
hidden nodes were used in an optimal network topology search, in each 
of the best iterations. To avoid overlearning the network, network 

training was stopped as the validation error began to rise. The most 
effective architecture was determined to have three neurons in the 
output layer, a hidden layer with nineteen neurons, and five neurons in 
the input layer (5-19-3). 

5. Results and discussions 

5.1. Technical performance evaluation 

The total power output and the amount of district heat supply from 
the proposed cogeneration system has been represented in the Fig. 3 at 
different composition of the fuel blending at the base case operating 
condition. Keeping the operating parameters fixed for all the fuel 
blending cases, it can be observed that the net power output increases 
with the increasing blending percentage of hydrogen from 0% to 20% 
then decreases marginally at the 50% H2 blending and again continu-
ously increases both at 80% H2 blending and 100% H2 supply. On the 
other hand, at the same operating condition, the net supply of district 
heat increases with the increasing blending percentage of hydrogen 
from 0% to 20% then decreases marginally at the 50% H2 blending and 
again increases at the 80% H2 blending and then decreases at the 100% 
H2 supply and eventually become the lowest among all. 

The energy and exergy efficiencies of the cogeneration system has 
been represented in the Fig. 4 at different composition of the fuel 
blending at the base case operating condition. Keeping the operating 
parameters fixed for all the fuel blending cases, it can be observed that 
the energy efficiency gradually increases with the increasing blending 
percentage of hydrogen from 0% to 20% then decreases marginally at 
the 50% H2 blending and again continuously increases till 100% H2 
supply. At the same time, the exergy efficiency of the proposed system at 
the different blending scenario follows the same trend of the energy 
efficiency at stated earlier. 

5.2. Economic performance evaluation 

The LCOE of the proposed cogeneration system has been represented 
in Fig. 5 at different compositions of fuel blending for the years 2020, 
2022, and 2050. The year 2050 is chosen as the UK is committed to be a 
net zero country by 2050. It is observed that the highest LCOE is 

Fig. 3. Power output and district heat supply at different hydrogen blending.  
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obtained for a 100% CH4 scenario, followed by 80%CH4 + 20%H2, 50% 
CH4 + 50%H2, 20%CH4 + 80%H2 and 100% LCOE, respectively. It is 
important to note that the present high cost of SOFC stacks is the major 
reason for higher LCOE. It is assumed that with progress in research and 
development and a higher volume of production, the cost of SOFC stack 
will be reduced. The projected SOFC stack cost in 2050 is considered to 
be 841 $/kW. The LCOE of the H2 based configuration will be minimum 
in the year 2050. 

5.3. ANN modelling results 

Based on the energy and exergy modelling study, an Artificial Neural 
Network (ANN) model was developed to forecast the amount of heat and 

power produced as well as the levelised cost of energy. Methane share in 
fuel, hydrogen share in fuel, current density, fuel utilisation and oper-
ating temperature of the SOFC were the input parameters. The SOFC 
output parameter prediction using ANN produced outstanding correla-
tion data, demonstrating the constructed network’s commendable pre-
dictive capacity for heat, power and LCOE. Fig. 6 depicts the overall 
network architecture of the selected network. 

The projected values and actual observations of the artificial neural 
network match excellently and consistently across the whole range of 
operation, as can be shown by looking at Figs. 7, 8, and 9. This highlights 
the ANN’s inherent robustness and sensitivity in its capacity to simul-
taneously map performance and cost data with accuracy. Fig. 7 shows 
the heat value as calculated by energy modelling and projected by the 

Fig. 4. Energy and exergy efficiency of the proposed system at different hydrogen blending.  

Fig. 5. Levelised cost energy of the proposed system at different hydrogen blending.  
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ANN model. From this it is determined that the coefficient of determi-
nation (R2) value was 0.99918, the root mean square error (RMSE) value 
was 0.5233, and the mean absolute percentage error (MAPE) value was 
0.0784%.Analysing Fig. 7, which contrasts the energy model’s simu-
lated value with the projected value of power from the ANN model, 
reveals that the MAPE value was 0.0993%, the RMSE value was 0.5226, 
and R2 value was 0.99999. Fig. 8 shows the comparison of levelised cost 
of energy (LCOE) predictions from an ANN model with simulated data. 
The RMSE, MAPE, and R2 for the ANN model prediction of LCOE with 
energy modelling data were 0.1550, 1.2608% and 0.99888 respectively. 

6. Comparison and limitations of the work 

In this specific section, we have performed a comprehensive com-
parison of our SOFC integrated systems with other similar setups. The 
summarised results presented in Table 2 undeniably indicate the 
tremendous promise and potential efficiency of our proposed systems 
from both technical and economic standpoints. It is important to note 
that the previous studies we referred to in the literature used various 
investigation methods, such as multi-objective optimisation, exergy 

analysis, and environmental analysis. However, we believe that our 
present system can benefit from further analysis with a more rigorous 
approach, specifically using multi-objective optimisation. This will 
allow us to delve deeper into the system’s performance and explore 
various trade-offs among different objectives. Additionally, while our 
current analysis was conducted under steady-state conditions, incorpo-
rating dynamic analysis could significantly enhance our understanding 
of the system dynamics. By simulating the system’s behaviour under 
varying conditions and transient states, we can better predict its 
response to changes and fluctuations. Therefore, we propose conducting 
a more in-depth analysis by implementing multi-objective optimisation 
techniques and incorporating dynamic simulations. This will not only 
strengthen the validity of our results but also provide valuable insights 
into the system’s behaviour over time. Ultimately, this approach will 
allow us to optimise the system’s performance and ensure its robustness 
under different operating conditions, making it a more reliable and 
efficient solution for SOFC integrated systems. 

7. Conclusions 

In this study, a detailed thermodynamic and economic performance 
analysis of SOFC based cogeneration system has been performed to 
supply electricity and heat to households. Additionally, green hydrogen 
has been blended with natural gas at varying percentage to study the 
techno-economical performances of the proposed cogeneration system. 
Furthermore, a large set of data obtained from simulation model were 
further trained using ANN tools. The major findings of the study are 
summarised below: 

• The net power output increases with the increasing blending per-
centage of hydrogen from 0% to 20% then decreases marginally at 
the 50% H2 blending and again continuously increases both at 80% 
H2 blending and 100% H2 supply.  

• The net supply of district heat increases with the increasing blending 
percentage of hydrogen from 0% to 20% then decreases marginally 
at the 50% H2 blending and again increases at the 80% H2 blending 

Fig. 6. The proposed ANN models network architecture.  

Fig. 7. Comparison of heat output with the ANN predicted data.  
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and then decreases at the 100% H2 supply and eventually become the 
lowest among all.  

• The energy efficiency and exergy efficiency of the system gradually 
increase with the increasing blending percentage of hydrogen from 

0% to 20% then decrease marginally at the 50% H2 blending and 
again continuously increase till 100% H2 supply.  

• It is observed that the highest LCOE is obtained for a 100% CH4 
scenario, followed by 80%CH4 + 20%H2, 50%CH4 + 50%H2, 20% 
CH4 + 80%H2 and 100% LCOE, respectively. 

Fig. 8. Comparison of power output with the ANN predicted data.  

Fig. 9. Comparison of LCOE with the ANN predicted data.  
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• The minimum LCOE of the system was estimated to be 4.64£/kWh.  
• Accuracy of ANN model was found to be excellent for heat, power 

and levelised cost of energy predictions, with the coefficient of 
determination of 0.99918, 0.99999 and 0.99888, respectively. 

This study has been conducted based on the UK scenario. However, 
the techno economic results and data might be different in other parts of 
the EU and other parts of the world which might be an interesting 
comparative study in future. Furthermore, this techno-economic study 
has been conducted without considering any government schemes or 
subsidies or any other government economic supports for making the 
efforts towards decarbonisation of energy systems. 
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