Dr Martin Mangler martin.mangler@durham.ac.uk
Academic Visitor
Melt diffusion-moderated crystal growth and its effect on euhedral crystal shapes
Mangler, Martin F; Humphreys, Madeleine C S; Geifman, Eshbal; Iveson, Alexander A; Wadsworth, Fabian B; Brooker, Richard A; Lindoo, Amanda; Hammond, Keiji
Authors
Professor Madeleine Humphreys madeleine.humphreys@durham.ac.uk
Professor
Eshbal Geifman
Dr Alexander Iveson alexander.a.iveson@durham.ac.uk
Academic Visitor
Dr Fabian Wadsworth fabian.b.wadsworth@durham.ac.uk
Associate Professor
Richard A Brooker
Dr Amanda Lindoo amanda.lindoo@durham.ac.uk
Post Doctoral Research Associate
Keiji Hammond
Abstract
Crystal growth is often described as either interface-controlled or diffusion-controlled. Here, we study crystal growth in an intermediate scenario where reaction rates at the crystal-melt interface are similar to the rates of diffusive transport of ions through the melt to the advancing crystal surface. To this end, we experimentally investigated euhedral plagioclase crystal shapes in dry mafic (basaltic) and hydrous silicic (haplodacitic) melts. Aspect ratios and inferred relative growth rates of the 3D short (S) and intermediate (I) crystal dimensions vary significantly between mafic and silicic melts, with δS:δI = 1:6 – 1:20 in basalt and 1:2.5 – 1:8 in hydrous haplodacite. The lower aspect ratios of plagioclase grown in the silicic melt coincide with 10-100x lower melt diffusion rates than in the mafic melt. Using an anisotropic growth model, we show that such differences in melt diffusivity can explain the discrepancy in plagioclase aspect ratios: if interface reaction and melt diffusion rates are of similar magnitude, then the growth of a crystal facet with high interfacial reaction rates may be limited by melt diffusion while another facet of the same crystal with lower interfacial reaction rates may grow uninhibited by melt diffusivity. This selective control of melt diffusion on crystal growth rates results in progressively more equant crystal shapes as diffusivity decreases, consistent with our experimental observations. Importantly, crystals formed in this diffusion-moderated, intermediate growth regime may not show any classical diffusion-controlled growth features. The proposed model was developed for plagioclase microlites, but should be generalisable to all anisotropic microlite growth in volcanic rocks.
Citation
Mangler, M. F., Humphreys, M. C. S., Geifman, E., Iveson, A. A., Wadsworth, F. B., Brooker, R. A., …Hammond, K. (2023). Melt diffusion-moderated crystal growth and its effect on euhedral crystal shapes. Journal of Petrology, 64(8), https://doi.org/10.1093/petrology/egad054
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 23, 2023 |
Online Publication Date | Aug 8, 2023 |
Publication Date | 2023-08 |
Deposit Date | Aug 10, 2023 |
Publicly Available Date | Aug 10, 2023 |
Journal | Journal of Petrology |
Print ISSN | 0022-3530 |
Electronic ISSN | 1460-2415 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 64 |
Issue | 8 |
DOI | https://doi.org/10.1093/petrology/egad054 |
Keywords | Geochemistry and Petrology; Geophysics |
Public URL | https://durham-repository.worktribe.com/output/1714822 |
Files
Published Journal Article
(1.5 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s) 2023. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
Accepted Journal Article
(1.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
Deciphering variable mantle sources and hydrous inputs to arc magmas in Kamchatka
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search