Dr George Mertzios george.mertzios@durham.ac.uk
Associate Professor
Strong Bounds for Evolution in Networks
Mertzios, G.B.; Spirakis, P.G.
Authors
P.G. Spirakis
Contributors
Fedor V. Fomin
Editor
Rūsiņš Freivalds
Editor
Marta Kwiatkowska
Editor
David Peleg
Editor
Abstract
This work extends what is known so far for a basic model of evolutionary antagonism in undirected networks (graphs). More specifically, this work studies the generalized Moran process, as introduced by Lieberman, Hauert, and Nowak [Nature, 433:312-316, 2005], where the individuals of a population reside on the vertices of an undirected connected graph. The initial population has a single mutant of a fitness value r (typically r > 1), residing at some vertex v of the graph, while every other vertex is initially occupied by an individual of fitness 1. At every step of this process, an individual (i.e. vertex) is randomly chosen for reproduction with probability proportional to its fitness, and then it places a copy of itself on a random neighbor, thus replacing the individual that was residing there. The main quantity of interest is the fixation probability, i.e. the probability that eventually the whole graph is occupied by descendants of the mutant. In this work we concentrate on the fixation probability when the mutant is initially on a specific vertex v, thus refining the older notion of Lieberman et al. which studied the fixation probability when the initial mutant is placed at a random vertex. We then aim at finding graphs that have many “strong starts” (or many “weak starts”) for the mutant. Thus we introduce a parameterized notion of selective amplifiers (resp. selective suppressors) of evolution. We prove the existence of strong selective amplifiers (i.e. for h(n) = Θ(n) vertices v the fixation probability of v is at least 1−c(r)n for a function c(r) that depends only on r), and the existence of quite strong selective suppressors. Regarding the traditional notion of fixation probability from a random start, we provide strong upper and lower bounds: first we demonstrate the non-existence of “strong universal” amplifiers, and second we prove the Thermal Theorem which states that for any undirected graph, when the mutant starts at vertex v, the fixation probability at least (r−1)/(r+degvdegmin). This theorem (which extends the “Isothermal Theorem” of Lieberman et al. for regular graphs) implies an almost tight lower bound for the usual notion of fixation probability. Our proof techniques are original and are based on new domination arguments which may be of general interest in Markov Processes that are of the general birth-death type.
Citation
Mertzios, G., & Spirakis, P. (2013). Strong Bounds for Evolution in Networks. In F. V. Fomin, R. Freivalds, M. Kwiatkowska, & D. Peleg (Eds.), Automata, languages, and programming : 40th international colloquium, ICALP 2013, Riga, Latvia, July 8 - 12, 2013, proceedings, part II (669-680). Springer Verlag. https://doi.org/10.1007/978-3-642-39212-2_58
Publication Date | 2013 |
---|---|
Deposit Date | Sep 5, 2014 |
Publicly Available Date | Jun 22, 2015 |
Publisher | Springer Verlag |
Pages | 669-680 |
Series Title | Lecture notes in computer science |
Book Title | Automata, languages, and programming : 40th international colloquium, ICALP 2013, Riga, Latvia, July 8 - 12, 2013, proceedings, part II. |
ISBN | 9783642392115 |
DOI | https://doi.org/10.1007/978-3-642-39212-2_58 |
Public URL | https://durham-repository.worktribe.com/output/1672465 |
Files
Accepted Book Chapter
(389 Kb)
PDF
Copyright Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39212-2_58.
You might also like
Interference-free walks in time: Temporally disjoint paths
(2022)
Journal Article
Equitable scheduling on a single machine
(2022)
Journal Article
The Power of Linear-Time Data Reduction for Maximum Matching
(2020)
Journal Article
When can graph hyperbolicity be computed in linear time?
(2018)
Journal Article
A linear-time algorithm for maximum-cardinality matching on cocomparability graphs
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search