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Abstract. This work extends what is known so far for a basic model of
evolutionary antagonism in undirected networks (graphs). More specif-
ically, this work studies the generalized Moran process, as introduced
by Lieberman, Hauert, and Nowak [Nature, 433:312-316, 2005], where
the individuals of a population reside on the vertices of an undirected
connected graph. The initial population has a single mutant of a fitness
value r (typically r > 1), residing at some vertex v of the graph, while
every other vertex is initially occupied by an individual of fitness 1. At
every step of this process, an individual (i.e. vertex) is randomly chosen
for reproduction with probability proportional to its fitness, and then it
places a copy of itself on a random neighbor, thus replacing the individ-
ual that was residing there. The main quantity of interest is the fixation
probability, i.e. the probability that eventually the whole graph is occu-
pied by descendants of the mutant. In this work we concentrate on the
fixation probability when the mutant is initially on a specific vertex v,
thus refining the older notion of Lieberman et al. which studied the fix-
ation probability when the initial mutant is placed at a random vertex.
We then aim at finding graphs that have many “strong starts” (or many
“weak starts”) for the mutant. Thus we introduce a parameterized no-
tion of selective amplifiers (resp. selective suppressors) of evolution. We
prove the existence of strong selective amplifiers (i.e. for h(n) = Θ(n)

vertices v the fixation probability of v is at least 1 − c(r)
n

for a func-
tion c(r) that depends only on r), and the existence of quite strong
selective suppressors. Regarding the traditional notion of fixation prob-
ability from a random start, we provide strong upper and lower bounds:
first we demonstrate the non-existence of “strong universal” amplifiers,
and second we prove the Thermal Theorem which states that for any
undirected graph, when the mutant starts at vertex v, the fixation prob-
ability at least (r − 1)/(r + deg v

degmin
). This theorem (which extends the

“Isothermal Theorem” of Lieberman et al. for regular graphs) implies
an almost tight lower bound for the usual notion of fixation probability.
Our proof techniques are original and are based on new domination ar-
guments which may be of general interest in Markov Processes that are
of the general birth-death type.

∗This work was partially supported by (i) the FET EU IP Project MULTIPLEX
(Contract no 317532), (ii) the ERC EU Grant ALGAME (Agreement no 321171),
and (iii) the EPSRC Grant EP/G043434/1. The full version of this paper is available
at http://arxiv.org/abs/1211.2384

http://arxiv.org/abs/1211.2384


1 Introduction

Population and evolutionary dynamics have been extensively studied [2,6,7,15,
21, 24, 25], mainly on the assumption that the evolving population is homoge-
neous, i.e. it has no spatial structure. One of the main models in this area is the
Moran Process [19], where the initial population contains a single mutant with
fitness r > 0, with all other individuals having fitness 1. At every step of this
process, an individual is chosen for reproduction with probability proportional
to its fitness. This individual then replaces a second individual, which is chosen
uniformly at random, with a copy of itself. Such dynamics as the above have been
extensively studied also in the context of strategic interaction in evolutionary
game theory [11–14,23].

In a recent article, Lieberman, Hauert, and Nowak [16] (see also [20]) in-
troduced a generalization of the Moran process, where the individuals of the
population are placed on the vertices of a connected graph (which is, in general,
directed) such that the edges of the graph determine competitive interaction. In
the generalized Moran process, the initial population again consists of a single
mutant of fitness r, placed on a vertex that is chosen uniformly at random, with
each other vertex occupied by a non-mutant of fitness 1. An individual is chosen
for reproduction exactly as in the standard Moran process, but now the second
individual to be replaced is chosen among its neighbors in the graph uniformly
at random (or according to some weights of the edges) [16, 20]. If the underly-
ing graph is the complete graph, then this process becomes the standard Moran
process on a homogeneous population [16,20]. Several similar models describing
infections and particle interactions have been also studied in the past, including
the SIR and SIS epidemics [10, Chapter 21], the voter and antivoter models and
the exclusion process [1,9,17]. However such models do not consider the issue of
different fitness of the individuals.

The central question that emerges in the generalized Moran process is how the
population structure affects evolutionary dynamics [16,20]. In the present work
we consider the generalized Moran process on arbitrary finite, undirected, and
connected graphs. On such graphs, the generalized Moran process terminates
almost surely, reaching either fixation of the graph (all vertices are occupied
by copies of the mutant) or extinction of the mutants (no copy of the mutant
remains). The fixation probability of a graph G for a mutant of fitness r, is the
probability that eventually fixation is reached when the mutant is initially placed
at a random vertex of G, and is denoted by fr(G). The fixation probability can,
in principle, be determined using standard Markov Chain techniques. But doing
so for a general graph on n vertices requires solving a linear system of 2n linear
equations. Such a task is not computationally feasible, even numerically. As a
result of this, most previous work on computing fixation probabilities in the
generalized Moran process was either restricted to graphs of small size [6] or
to graph classes which have a high degree of symmetry, reducing thus the size
of the corresponding linear system (e.g. paths, cycles, stars, and cliques [3–5]).
Experimental results on the fixation probability of random graphs derived from
grids can be found in [22].
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A recent result [8] shows how to construct fully polynomial randomized ap-
proximation schemes (FPRAS) for the probability of reaching fixation (when
r ≥ 1) or extinction (for all r > 0). The result of [8] uses a Monte Carlo es-
timator, i.e. it runs the generalized Moran process several times4, while each
run terminates in polynomial time with high probability [8]. Note that improved
lower and upper bounds on the fixation probability immediately lead to a better
estimator here. Ontil now, the only known general bounds for the fixation proba-
bility on connected undirected graphs, are that fr(G) ≥ 1

n and fr(G) ≤ 1− 1
n+r .

Lieberman et al. [16,20] proved the Isothermal Theorem, stating that (in the
case of undirected graphs) the fixation probability of a regular graph (i.e. of
a graph with overall the same vertex degree) is equal to that of the complete
graph (i.e. the homogeneous population of the standard Moran process), which
equals to (1 − 1

r )/(1 − 1
rn ), where n is the size of the population. Intuitively,

in the Isothermal Theorem, every vertex of the graph has a temperature which
determines how often this vertex is being replaced by other individuals dur-
ing the generalized Moran process. The complete graph (or equivalently, any
regular graph) serves as a benchmark for measuring the fixation probability of
an arbitrary graph G: if fr(G) is larger (resp. smaller) than that of the com-
plete graph then G is called an amplifier (resp. a suppressor) [16, 20]. Until
now only graphs with similar (i.e. a little larger or smaller) fixation probability
than regular graphs have been identified [3–5, 16, 18], while no class of strong
amplifiers/suppressors is known so far.

Our contribution. The structure of the graph, on which the population resides,
plays a crucial role in the course of evolutionary dynamics. Human societies or
social networks are never homogeneous, while certain individuals in central po-
sitions may be more influential than others [20]. Motivated by this, we introduce
in this paper a new notion of measuring the success of an advantageous mutant
in a structured population, by counting the number of initial placements of the
mutant in a graph that guarantee fixation of the graph with large probability.
This provides a refinement of the notion of fixation probability. Specifically, we
do not any more consider the fixation probability as the probability of reaching
fixation when the mutant is placed at a random vertex, but we rather consider
the probability fr(v) of reaching fixation when a mutant with fitness r > 1 is
introduced at a specific vertex v of the graph; fr(v) is termed the fixation prob-
ability of vertex v. Using this notion, the fixation probability fr(G) of a graph
G = (V,E) with n vertices is fr(G) = 1

n

∑
v∈V fr(v).

We aim in finding graphs that have many “strong starts” (or many “weak
starts”) of the mutant. Thus we introduce the notions of (h(n), g(n))-selective
amplifiers (resp. (h(n), g(n))-selective suppressors), which include those graphs

with n vertices for which there exist at least h(n) vertices v with fr(v) ≥ 1− c(r)
g(n)

(resp. fr(v) ≤ c(r)
g(n) ) for an appropriate function c(r) of r. We contrast this new

4For approximating the probability to reach fixation (resp. extinction), one needs a
number of runs which is about the inverse of the best known lower (resp. upper) bound
of the fixation probability.

3



notion of (h(n), g(n))-selective amplifiers (resp. suppressors) with the notion of
g(n)-universal amplifiers (resp. suppressors) which include those graphs G with

n vertices for which fr(G) ≥ 1 − c(r)
g(n) (resp. fr(G) ≤ c(r)

g(n) ) for an appropriate

function c(r) of r. For a detailed presentation and a rigorous definition of these
notions we refer to Section 2.

Using these new notions, we prove that there exist strong selective ampli-
fiers, namely (Θ(n), n)-selective amplifiers (called the urchin graphs). Further-
more we prove that there exist also quite strong selective suppressors, namely
( n
φ(n)+1 ,

n
φ(n) )-selective suppressors (called the φ(n)-urchin graphs) for any func-

tion φ(n) = ω(1) with φ(n) ≤
√
n.

Regarding the traditional measure of the fixation probability fr(G) of undi-
rected graphs G, we provide upper and lower bounds that are much stronger
than the bounds 1

n and 1 − 1
n+r that were known so far [8]. More specifically,

first of all we demonstrate the nonexistence of “strong” universal amplifiers by
showing that for any graph G with n vertices, the fixation probability fr(G) is

strictly less than 1− c(r)
n3/4+ε , for any ε > 0. This is in a wide contrast with what

happens in directed graphs, as Lieberman et al. [16] provided directed graphs
with arbitrarily large fixation probability (see also [20]).

On the other hand, we provide our lower bound in the Thermal Theorem,
which states that for any vertex v of an arbitrary undirected graphG, the fixation
probability fr(v) of v is at least (r−1)/(r+ deg v

degmin
) for any r > 1, where deg v is

the degree of v in G (i.e. the number of its neighbors) and degmin (resp. degmax)
is the minimum (resp. maximum) degre in G. This result extends the Isothermal
Theorem for regular graphs [16]. In particular, we consider here a different notion
of temperature for a vertex than [16]: the temperature of vertex v is 1

deg v . As

it turns out, a “hot” vertex (i.e. with hight temperature) affects more often its
neighbors than a “cold” vertex (with low temperature). The Thermal Theorem,
which takes into account the vertex v on which the mutant is introduced, provides
immediately our lower bound (r − 1)/(r + degmax

degmin
) for the fixation probability

fr(G) of any undirected graph G. The latter lower bound is almost tight, as it
implies that fr(G) ≥ r−1

r+1 for a regular graph G, while the Isothermal Theorem

implies that the fixation probability of a regular graph G tends to r−1
r as the size

ofG increases. Note that our new upper/lower bounds for the fixation probability
lead to better time complexity of the FPRAS proposed in [8], as the Monte Carlo
technique proposed in [8] now needs to simulate the Moran process a less number
of times (to estimate fixation or extinction).

Our techniques are original and of a constructive combinatorics flavor. For
the class of strong selective amplifiers (the urchin graphs) we introduce a novel
decomposition of the Markov chain M of the generalized Moran process into
n− 1 smaller chainsM1,M2, . . . ,Mn−1, and then we decompose eachMk into
two even smaller chains M1

k,M2
k. Then we exploit a new way of composing

these smaller chains (and returning to the original one) that is carefully done
to maintain the needed domination properties. For the proof of the lower bound
in the Thermal Theorem, we first introduce a new and simpler weighted pro-
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cess that bounds fixation probability from below (the generalized Moran process
is a special case of this new process). Then we add appropriate dummy states
to its (exponentially large) Markov chain, and finally we iteratively modify the
resulting chain by maintaining the needed monotonicity properties. Eventually
this results to the desired lower bound of the Thermal Theorem. Finally, our
proof for the non-existence of strong universal amplifiers is done by contradic-
tion, partitioning appropriately the vertex set of the graph and discovering an
appropriate independent set that leads to the contradiction.

2 Preliminaries

Throughout the paper we consider only finite, connected, undirected graphs
G = (V,E). Our results apply to connected graphs as, otherwise, the fixation
probability is necessarily zero. The edge e ∈ E between two vertices u, v ∈ V is
denoted by e = uv. For a vertex subset X ⊆ V , we write X + y and X − y for
X∪{y} and X∩{y}, respectively. Furthermore, throughout r denotes the fitness
of the mutant, while the value r is considered to be independent of the size n of
the network, i.e. we assume that r is constant. For simplicity of presentation, we
call a vertex v “infected” if a copy of the mutant is placed on v. For every vertex
subset S ⊆ V we denote by fr(S) the fixation probability of the set S, i.e. the
probability that, starting with exactly |S| copies of the mutant placed on the
vertices of S, the generalized Moran process will eventually reach fixation. By
the definition of the generalized Moran process fr(∅) = 0 and fr(V ) = 1, while
for S /∈ {∅, V },

fr(S) =

∑
xy∈E

(
r

deg xf(S + y) + 1
deg yf(S − x)

)
∑
xy∈E

(
r

deg x + 1
deg y

)
Therefore, eliminating self-loops in the above Markov process,

fr(S) =

∑
xy∈E,x∈S,y/∈S

(
r

deg xfr(S + y) + 1
deg yfr(S − x)

)
∑
xy∈E,x∈S,y/∈S

(
r

deg x + 1
deg y

) (1)

In the next definition we introduce the notions of universal and selective ampli-
fiers.

Definition 1. Let G be an infinite class of undirected graphs. If there exists an
n0 ∈ N, an r0 ≥ 1, and some function c(r), such that for every graph G ∈ G
with n ≥ n0 vertices and for every r > r0:

– fr(G) ≥ 1− c(r)
g(n) , then G is a class of g(n)-universal amplifiers,

– there exists a subset S of at least h(n) vertices of G, such that fr(v) ≥ 1− c(r)
g(n)

for every vertex v ∈ S, then G is a class of (h(n), g(n))-selective amplifiers.
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Moreover, G is a class of strong universal (resp. strong selective) amplifiers if
G is a class of n-universal (resp. (Θ(n), n)-selective) amplifiers.

Similarly to Definition 1, we introduce the notions of universal and selective
suppressors.

Definition 2. Let G be an infinite class of undirected graphs. If there exist func-
tions c(r) and n0(r), such that for every r > 1 and for every graph G ∈ G with
n ≥ n0(r) vertices:

– fr(G) ≤ c(r)
g(n) , then G is a class of g(n)-universal suppressors,

– there exists a subset S of at least h(n) vertices of G, such that fr(v) ≤ c(r)
g(n)

for every vertex v ∈ S, then G is a class of (h(n), g(n))-selective suppressors.

Moreover, G is a class of strong universal (resp. strong selective) suppressors if
G is a class of n-universal (resp. (Θ(n), n)-selective) suppressors.

Note that n0 = n0(r) in Definition 2, while in Definition 1 n0 is not a function
of r. The reason for this is that, since we consider the fitness value r to be
constant, the size n of G needs to be sufficiently large with respect to r in order
for G to act as a suppressor. Indeed, if we let r grow arbitrarily, e.g. if r = n2,
then for any graph G with n vertices the fixation probability fr(v) tends to 1 as
n grows. The next lemma follows by Definitions 1 and 2.

Lemma 1. If G is a class of g(n)-universal amplifiers (resp. suppressors), then
G is a class of (Θ(n), g(n))-selective amplifiers (resp. suppressors).

The most natural question that arises by Definitions 1 and 2 is whether
there exists any class of strong selective amplifiers/suppressors, as well as
for which functions h(n) and g(n) there exist classes of g(n)-universal ampli-
fiers/suppressors and classes of (h(n), g(n))-selective amplifiers/suppressors. In
Section 3 and 4 we provide our results on amplifiers and suppressors, respectively.

3 Amplifier bounds

In this section we prove that there exist no strong universal amplifiers (Sec-
tion 3.1), although there exists a class of strong selective amplifiers (Section 3.2).

3.1 Non-existence of strong universal amplifiers

Theorem 1. For any function g(n) = Ω(n
3
4+ε) for some ε > 0, there exists no

graph class G of g(n)-universal amplifiers for any r > r0 = 1.

Proof (sketch). The proof is done by contradiction. It involves a surprising par-
tition of the vertices of the graph into three sets V1, V2, V3, where V1 and V2 are
independent sets, and N(v) ⊆ V3 for every v ∈ V1 ∪ V2. For the detailed proof
we refer to the full paper in the Appendix.

Corollary 1. There exists no infinite class G of undirected graphs which are
strong universal amplifiers.
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3.2 A class of strong selective amplifiers

In this section we present the first class G = {Gn : n ≥ 1} of strong selective am-
plifiers, which we call the urchin graphs. Namely, the graph Gn has 2n vertices,
consisting of a clique with n vertices, an independent set of n vertices, and a per-
fect matching between the clique and the independent set, as it is illustrated in
Figure 1(a). For every graph Gn, we refer for simplicity to a vertex of the clique
of Gn as a clique vertex of Gn, and to a vertex of the independent set of Gn as a
nose ofGn, respectively. We prove in this section that the class G of urchin graphs
are strong selective amplifiers. Namely, we prove that, whenever r > r0 = 5, the

fixation probability of any nose v of any graph Gn is fr(v) ≥ 1− c(r)
n , where c(r)

is a function that depends only on the mutant fitness r.

Let v be a clique vertex (resp. a nose) and u be its adjacent nose (resp. clique
vertex). If v is infected and u is not infected, then v is called an isolated clique ver-
tex (resp. isolated nose), otherwise v is called a covered clique vertex (resp. cov-
ered nose). Let k ∈ {0, 1, . . . , n}, i ∈ {0, 1, 2, . . . , n− k}, and x ∈ {0, 1, 2, . . . , k}.
Denote by Qki,x the state of Gn with exactly i isolated clique vertices, x isolated

noses, and k − x covered noses. An example of the state Qki,x is illustrated in

Figure 1. Furthermore, for every k, i ∈ {0, 1, . . . , n}, we define the state P ki of
Gn as follows. If i ≤ k, then P ki is the state with exactly i covered noses and k−i
isolated noses. If i > k, then P ki is the state with exactly k covered noses and
i− k isolated clique vertices. Note that Qki,0 = P kk+i and Qk0,x = P kk−x, for every
k ∈ {0, 1, . . . , n}, i ∈ {0, 1, 2, . . . , n− k}, and x ∈ {0, 1, 2, . . . , k}. Two examples
of the state P ki , for the cases where i ≤ k and i > k, are shown in Figure 1.

Gn : n-clique

(a)

k

x

iQk
i,x :

(b)

k

Pi :
i

(c)

k

Pi :
i

(d)

Fig. 1. (a) The “urchin” graph Gn. Furthermore, the state (b) Qk
i,x and the state P k

i ,
where (c) i ≤ k, and (d) i > k.

Let k ∈ {1, 2, . . . , n− 1}. For all appropriate values of i and x, we denote by
qki,x (resp. pki ) the probability that, starting at state Qki,x (resp. P ki ) we eventually
arrive to a state with k+ 1 infected noses before we arrive to a state with k− 1
infected noses.

Lemma 2. Let 1 ≤ k ≤ n− 1. Then qki,x > qki−1,x−1, for every i ∈ {1, 2, . . . , n−
k} and every x ∈ {1, 2, . . . , k}.
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Corollary 2. Let k ∈ {1, 2, . . . , n − 1}, i ∈ {0, 1, . . . , n − k}, and x ∈
{0, 1, . . . , k}. Then qki,x > pkk+i−x.

Note by Corollary 2 that, in order to compute a lower bound for the fixation
probability fr(v) of a nose v of the graph Gn, we can assume that, whenever we
have k infected noses and i infected clique vertices, we are at state P ki . That is,
in the Markov chain of the generalized Moran process, we replace any transition
to a state Qki,x with a transition to state P kk+i−x. Denote this relaxed Markov
chain by M; we will compute a lower bound of the fixation probability of state
P 1
0 in the Markov chain M (cf. Theorem 2).

In order to analyze M, we decompose it first into the n− 1 smaller Markov
chainsM1,M2, . . . ,Mn−1, as follows. For every k ∈ {1, 2, . . . , n−1}, the Markov
chainMk captures all transitions ofM between states with k infected noses. We
denote by Fk−1 (resp. Fk+1) an arbitrary state with k− 1 (resp. k + 1) infected
noses. Moreover, we consider Fk−1 and Fk+1 as absorbing states ofMk. Since we
want to compute a lower bound of the fixation probability, whenever we arrive
at state Fk+1 (resp. at state Fk−1), we assume that we have the smallest number
of infected clique vertices with k + 1 (resp. with k − 1) infected noses. That is,
whenever Mk reaches state Fk+1, we assume that M has reached state P k+1

k+1

(and thus we move to the Markov chainMk+1). Similarly, wheneverMk reaches
state Fk−1, we assume that M has reached state P k−10 (and thus we move to
the Markov chain Mk−1).

A decomposition of Mk into two Markov chains. In order to analyze the
Markov chainMk, where k ∈ {1, 2, . . . , n−1}, we decompose it into two smaller
Markov chains {M1

k,M2
k}.

In M1
k, we consider the state P kk+1 absorbing. For every i ∈ {0, 1, . . . , k}

denote by hki the probability that, starting at state P ki in M1
k, we eventually

reach state P kk+1 before we reach state Fk−1. In this Markov chain M1
k, every

transition probability between two states is equal to the corresponding transition
probabilities in Mk.

In M2
k, we denote by ski , where i ∈ {k, k + 1, . . . , n}, the probability that

starting at state P ki we eventually reach state Fk+1 before we reach state Fk−1.
In this Markov chainM2

k, the transition probability from state P kk to state P kk+1

(resp. to state Fk−1) is equal to hkk (resp. 1−hkk), while all other transition prob-
abilities between two states inM2

k are the same as the corresponding transition
probabilities in Mk.

Urchin graphs are strong selective amplifiers. We now conclude our analy-
sis by combining the results of Section 3.2 on the two Markov chainsM1 andM2.
In the Markov chain M, the transition from state P k0 to the states P kk , P

k−1
0 is

done through the Markov chain M1, and the transition from state P kk to the
states P k+1

k+1 , P
k−1
0 is done through the Markov chain M2, respectively.

In the Markov chain M, the transition probability from state P kk to
state P k+1

k+1 (resp. P k−10 ) is skk (resp. 1 − skk). Recall that skk is the probabil-
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ity that, starting at P kk inM2 (and thus also inM), we reach state Fk+1 before
we reach Fk−1. Furthermore, the transition probability from state P k0 to state P kk
is equal to the probability that, starting at P k0 in M1, we reach P kk before we
reach Fk−1. Note that this probability is larger than hk0 . Therefore, in order to
compute a lower bound of the fixation probability of a nose in Gn, we can as-
sume that in M the transition probability from state P k0 to P kk (resp. P k−10 )
is hk0 (resp. 1− hk0).

Note that for every k ∈ {2, . . . , n − 1} the infected vertices of state P k0 is a
strict subset of the infected vertices of state P kk . Therefore, in order to compute
a lower bound of the fixation probability of state P 1

0 in M, we can relax M by
changing every transition from state P k−1k−1 to state P kk to a transition from state

P k−1k−1 to state P k0 , where k ∈ {2, . . . , n − 1}. After eliminating the states P kk in
M′, where k ∈ {1, 2, . . . , n−1}, we obtain an equivalent birth-death process Bn.
Denote by p1 the fixation probability of state P 1

0 in Bn, i.e. p1 is the probability
that, starting at state P 1

0 in Bn, we eventually arrive to state Pnn . For the next
theorem we use the lower bounds of Section 3.2.

Theorem 2. For any r > 5 and for sufficiently large n, the fixation probability

p1 of state P 1
0 in Bn is p1 ≥ 1− c(r)

n , for some appropriate function c(r) of r.

We are now ready to provide our main result in this section.

Theorem 3. The class G = {Gn : n ≥ 1} of urchin graphs is a class of strong
selective amplifiers.

4 Suppressor bounds

In this section we prove our lower bound for the fixation probability of an ar-
bitrary undirected graph, namely the Thermal Theorem (Section 4.1), which
generalizes the analysis of the fixation probability of regular graphs [16]. Fur-
thermore we present for every function φ(n), where φ(n) = ω(1) and φ(n) ≤

√
n,

a class of ( n
φ(n)+1 ,

n
φ(n) )-selective suppressors in Section 4.2.

4.1 The Thermal Theorem

Consider a graph G = (V,E) and a fitness value r > 1. Denote by Mr(G) the
generalized Moran process on G with fitness r. Then, for every subset S /∈ {∅, V }
of its vertices, the fixation probability fr(S) of S in Mr(G) is given by (1),
where fr(∅) = 0 and fr(V ) = 1. That is, the fixation probabilities fr(S), where
S /∈ {∅, V }, are the solution of the linear system (1) with boundary conditions
fr(∅) = 0 and fr(V ) = 1.

Suppose that at some iteration of the generalized Moran process the set S
of vertices are infected and that the edge xy ∈ E (where x ∈ S and y /∈ S)
is activated, i.e. either x infects y or y disinfects x. Then (1) implies that the
probability that x infects y is higher if 1

deg x is large; similarly, the probability
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that y disinfects x is higher if 1
deg y is large. Therefore, in a fashion similar

to [16], we call for every vertex v ∈ V the quantity 1
deg v the temperature of v: a

“hot” vertex (i.e. with high temperature) affects more often its neighbors than
a “cold” vertex (i.e. with low temperature). It follows now by (1) that for every
set S /∈ {∅, V } there exists at least one pair x(S), y(S) of vertices with x(S) ∈ S,
y(S) /∈ S, and x(S)y(S) ∈ E such that

fr(S) ≥
r

deg x(S)fr(S + y(S)) + 1
deg y(S)fr(S − x(S))

r
deg x(S) + 1

deg y(S)

(2)

Thus, solving the linear system that is obtained from (2) by replacing inequalities
with equalities, we obtain a lower bound for the fixation probabilities fr(S),
where S /∈ {∅, V }. In the next definition we introduce a weighted generalization
of this linear system, which is a crucial tool for our analysis in obtaining the
Thermal Theorem.

Definition 3. (the linear system L0) Let G = (V,E) be an undirected graph
and r > 1. Let every vertex v ∈ V have weight (temperature) dv > 0. The
linear system L0 on the variables pr(S), where S ⊆ V , is given by the following
equations whenever S /∈ {∅, V }:

pr(S) =
rdx(S)pr(S + y(S)) + dy(S)pr(S − x(S))

rdx(S) + dy(S)
(3)

with boundary conditions pr(∅) = 0 and pr(V ) = 1.

With a slight abuse of notation, whenever S = {u1, u2, . . . , uk}, we denote
pr(u1, u2, . . . , uk) = pr(S).

Observation 1 The linear system L0 in Definition 3 corresponds naturally to
the Markov chain M0 with one state for every subset S ⊆ V , where the states ∅
and V are absorbing, and every non-absorbing state S has exactly two transitions

to the states S+y(S) and S−x(S) with transition probabilities qS =
rdx(S)

rdx(S)+dy(S)

and 1− qS, respectively.

Observation 2 Let G = (V,E) be a graph and r > 1. For every vertex x ∈ V
let dx = 1

deg x be the temperature of x. Then fr(S) ≥ pr(S) for every S ⊆ V ,

where the values pr(S) are the solution of the linear system L0.

Before we provide the Thermal Theorem (Theorem 4), we first prove an
auxiliary result in the next lemma which generalizes the Isothermal Theorem
of [16] for regular graphs, i.e. for graphs with the same number of neighbors for
every vertex.

Lemma 3. Let G = (V,E) be a graph with n vertices, r > 1, and du be the

same for all vertices u ∈ V . Then pr(u) =
1− 1

r

1− 1
rn
≥ 1− 1

r for every vertex u ∈ V .
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We are now ready to provide our main result in this section which provides a
lower bound for the fixation probability on arbitrary graphs, parameterized by
the maximum ratio between two different temperatures in the graph.

Theorem 4 (Thermal Theorem). Let G = (V,E) be a connected undirected
graph and r > 1. Then fr(v) ≥ r−1

r+ deg v
degmin

for every v ∈ V .

The lower bound for the fixation probability in Theorem 4 is almost tight.
Indeed, if a graph G = (V,E) with n vertices is regular, i.e. if deg u = deg v for

every u, v ∈ V , then fr(G) =
1− 1

r

1− 1
rn

by Lemma 3 (cf. also the Isothermal Theorem

in [16]), and thus fr(G) ∼= r−1
r for large enough n. On the other hand, Theorem 4

implies for a regular graph G that fr(G) ≥ r−1
r+1 .

4.2 A class of selective suppressors

In this section we present for every function φ(n), where φ(n) = ω(1) and φ(n) ≤√
n, the class Gφ(n) = {Gφ(n),n : n ≥ 1} of ( n

φ(n)+1 ,
n

φ(n) )-selective suppressors.

We call these graphs φ(n)-urchin graphs, since for φ(n) = 1 they coincide with
the class of urchin graphs in Section 3.2. For every n, the graph Gφ(n),n =
(Vφ(n),n, Eφ(n),n) has n vertices. Its vertex set Vφ(n),n can be partitioned into two

sets V 1
φ(n),n and V 2

φ(n),n, where |V 1
φ(n),n| =

n
φ(n)+1 and |V 2

φ(n),n| =
φ(n)
φ(n)+1n, such

that V 1
φ(n),n induces a clique and V 2

φ(n),n induces an independent set in Gφ(n),n.

Furthermore, every vertex u ∈ V 2
φ(n),n has φ(n) neighbors in V 1

φ(n),n, and every

vertex v ∈ V 1
φ(n),n has φ2(n) neighbors in V 2

φ(n),n. Therefore deg v = n+φ2(n)−1

for every v ∈ V 1
φ(n),n and deg u = φ(n) for every u ∈ V 2

φ(n),n.

Theorem 5. For every function φ(n), where φ(n) = ω(1) and
φ(n) ≤

√
n, the class Gφ(n) = {Gφ(n),n : n ≥ 1} of φ(n)-urchin graphs is a

class of ( n
φ(n)+1 ,

n
φ(n) )-selective suppressors.
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