Dr George Mertzios george.mertzios@durham.ac.uk
Associate Professor
Approximating Fixation Probabilities in the Generalized Moran Process
Mertzios, G.B.
Authors
Contributors
Ming-Yang Kao
Editor
Abstract
Problem Definition Population and evolutionary dynamics have been extensively studied, usually with the assumption that the evolving population has no spatial structure. One of the main models in this area is the Moran process [17]. The initial population contains a single “mutant” with fitness r > 0, with all other individuals having fitness 1. At each step of the process, an individual is chosen at random, with probability proportional to its fitness. This individual reproduces, replacing a second individual, chosen uniformly at random, with a copy of itself. Lieberman, Hauert, and Nowak introduced a generalization of the Moran process, where the members of the population are placed on the vertices of a connected graph which is, in general, directed [13, 19]. In this model, the initial population again consists of a single mutant of fitness r > 0 placed on a vertex chosen uniformly at ...
Citation
Mertzios, G. (2014). Approximating Fixation Probabilities in the Generalized Moran Process. In M. Kao (Ed.), Encyclopedia of algorithms (1-6). Springer Verlag. https://doi.org/10.1007/978-3-642-27848-8_596-1
Publication Date | Nov 26, 2014 |
---|---|
Deposit Date | Mar 13, 2015 |
Publisher | Springer Verlag |
Pages | 1-6 |
Book Title | Encyclopedia of algorithms. |
DOI | https://doi.org/10.1007/978-3-642-27848-8_596-1 |
Keywords | Evolutionary dynamics, Moran process, Fixation probability, Markov-chain Monte Carlo, Approximation algorithm. |
Public URL | https://durham-repository.worktribe.com/output/1646742 |
Contract Date | Oct 3, 2013 |
You might also like
Interference-free walks in time: Temporally disjoint paths
(2022)
Journal Article
Equitable scheduling on a single machine
(2022)
Journal Article
The Power of Linear-Time Data Reduction for Maximum Matching
(2020)
Journal Article
When can graph hyperbolicity be computed in linear time?
(2018)
Journal Article
A linear-time algorithm for maximum-cardinality matching on cocomparability graphs
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search