C.P. Pearman
Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking
Pearman, C.P.; Adams, C.S.; Cox, S.G.; Griffin, P.F.; Smith, D.A.; Hughes, I.G.
Authors
Professor Stuart Adams c.s.adams@durham.ac.uk
Professor
S.G. Cox
P.F. Griffin
D.A. Smith
Professor Ifan Hughes i.g.hughes@durham.ac.uk
Professor
Abstract
We study polarization spectroscopy of Rb vapour. A weak probe beam analyses the birefringence induced in a room temperature vapour by a strong counterpropagating circularly polarized pump beam. In contrast to most other work on polarization spectroscopy, we use a polarization beam splitting cube and two detectors (rather than a polarizer and one detector) to analyse the probe beam. The signal is in the form of a derivative of a Lorentzian. For theoretical analysis we study the closed atomic transition 5 2S1/2 (F = 3) --> 5 2P3/2 (F' = 4) in the D2 line of 85Rb. We study the time needed to redistribute population among the mF states, derive an expression for the expected lineshape and present experimental data in excellent agreement with theory. The polarization spectrum provides an ideal error signal for frequency stabilization of a laser. We describe the geometry and parameters for optimizing the error signal.
Citation
Pearman, C., Adams, C., Cox, S., Griffin, P., Smith, D., & Hughes, I. (2002). Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking. Journal of Physics B: Atomic, Molecular and Optical Physics, 35(24), 5141-5151. https://doi.org/10.1088/0953-4075/35/24/315
Journal Article Type | Article |
---|---|
Publication Date | 2002-12 |
Deposit Date | Dec 13, 2006 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Print ISSN | 0953-4075 |
Electronic ISSN | 1361-6455 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 35 |
Issue | 24 |
Pages | 5141-5151 |
DOI | https://doi.org/10.1088/0953-4075/35/24/315 |
Keywords | Neutral atoms. |
Public URL | https://durham-repository.worktribe.com/output/1625916 |
You might also like
Giant microwave–optical Kerr nonlinearity via Rydberg excitons in cuprous oxide
(2024)
Journal Article
Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system.
(2024)
Journal Article
Emergence of Synchronization in a Driven-Dissipative Hot Rydberg Vapor
(2023)
Journal Article
Rapid readout of terahertz orbital angular momentum beams using atom-based imaging
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search