Skip to main content

Research Repository

Advanced Search

Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes

Stewart, R.; Christie, V.; Przyborski, S.A.

Authors

R. Stewart

V. Christie



Abstract

There are few reliable cell systems available to study the process of human neural development. Embryonal carcinoma (EC) cells are pluripotent stem cells derived from teratocarcinomas and offer a robust culture system to research cell differentiation in a manner pertinent to embryogenesis. Here, we describe the recent development of a series of culture procedures that together can be used to induce the differentiation of human EC stem cells, resulting in the formation of either pure populations of differentiated neurons, populations of differentiated astrocytes, or populations of immature neuronal cell types. Cell-type-specific markers were used to examine the induction of EC stem cell differentiation by retinoic acid. In direct response to manipulation of the culture environment, the expression of cell type markers correlated with the differentiation and appearance of distinct neural cell types, including neurons and astrocytes. These experiments demonstrate that cultured human EC stem cells provide a robust model cell system capable of reproducibly forming neural subtypes for research purposes.

Citation

Stewart, R., Christie, V., & Przyborski, S. (2003). Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem Cells, 21(3), 248-256. https://doi.org/10.1634/stemcells.21-3-248

Journal Article Type Article
Publication Date May 1, 2003
Deposit Date May 17, 2007
Journal STEM CELLS
Print ISSN 1066-5099
Electronic ISSN 1549-4918
Publisher Oxford University Press
Peer Reviewed Not Peer Reviewed
Volume 21
Issue 3
Pages 248-256
DOI https://doi.org/10.1634/stemcells.21-3-248
Keywords Pluripotent stem cell, Human, Neurogenesis, Neuron, Astrocyte, Tissue culture.
Public URL https://durham-repository.worktribe.com/output/1620189