Dr Noura Al Moubayed noura.al-moubayed@durham.ac.uk
Associate Professor
Multi-objective particle swarm optimisation: methods and applications
Al Moubayed, N
Authors
Contributors
Andrei Petrovski
Supervisor
John McGall
Supervisor
Abstract
Solving real life optimisation problems is a challenging engineering venture. Since the early days of research on optimisation it was realised that many problems do not simply have one optimisation objective. This led to the development of multi-objective optimizers that try to look at the optimisation problem from di erent points of view and reach a set of compromised solutions among the di erent objectives. The presented research brings together recent advances in the eld of multi-objective optimisation and particle swarm optimisation raising several challenges. This is tackled from di erent aspects including the proposal of new archiving techniques to developing new methods and quality measures. Smart Multi-objective Particle Swarm Optimisation based on Decomposition (SDMOPSO) is rst proposed to incorporate multi-objective problem decomposition techniques with PSO. A novel archiving technique is developed using a clustering based mapping approach between the objective and solution spaces and is applied to general multi-objective optimizers. D2MOPSO is introduced as a new MOPSO that uses problem decomposition and a new archive utilising dominance based mapping between objective and solution spaces. Finally the thesis presents a novel multi-objective quality measure that uses mutual information to compare among solutions generated by di erent algorithms. The contributions are all tested on standard test suits and are used to solve two real-life problems: a) Channel selection for Brain-Computer Interfaces, and b) E ective cancer chemotherapy treatments. The two problems are real challenges in the two respective elds. Two di erent modelling approaches of the channel selection problem are presented: one is based on binary representation of the channels, while the other is continuous in a projected space of the channel locations. The results are very competitive with the commonly used methods.
Citation
Al Moubayed, N. (2014). Multi-objective particle swarm optimisation: methods and applications. (Thesis). Robert Gordon University. Retrieved from https://durham-repository.worktribe.com/output/1618029
Thesis Type | Thesis |
---|---|
Acceptance Date | Jan 1, 2014 |
Deposit Date | Jan 26, 2016 |
Public URL | https://durham-repository.worktribe.com/output/1618029 |
Award Date | 2014 |
You might also like
Is Unimodal Bias Always Bad for Visual Question Answering? A Medical Domain Study with Dynamic Attention
(2022)
Presentation / Conference Contribution
Towards Graph Representation Learning Based Surgical Workflow Anticipation
(2022)
Presentation / Conference Contribution
Efficient Uncertainty Quantification for Multilabel Text Classification
(2022)
Presentation / Conference Contribution
Contrastive Learning with Heterogeneous Graph Attention Networks on Short Text Classification
(2022)
Presentation / Conference Contribution
INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations
(2022)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search