K. Góral
Adiabatic association of ultracold molecules via magnetic-field tunable interactions
Góral, K.; Köhler, T.; Gardiner, S.A.; Tiesinga, E.; Julienne, P.S.
Authors
Abstract
We consider in detail the situation of applying a time-dependent external magnetic field to a 87Rb atomic Bose–Einstein condensate held in a harmonic trap, in order to adiabatically sweep the interatomic interactions across a Feshbach resonance to produce diatomic molecules. To this end, we introduce a minimal two-body Hamiltonian depending on just five measurable parameters of a Feshbach resonance, which accurately determines all low-energy binary scattering observables, in particular, the molecular conversion efficiency of just two atoms. Based on this description of the microscopic collision phenomena, we use the many-body theory of Köhler and Burnett (2002 Phys. Rev. A 65 033601) to study the efficiency of the association of molecules in a 87Rb Bose–Einstein condensate during a linear passage of the magnetic-field strength across the 100 mT Feshbach resonance. We explore different, experimentally accessible, parameter regimes, and compare the predictions of Landau–Zener, configuration interaction, and two-level mean-field calculations with those of the microscopic many-body approach. Our comparative studies reveal a remarkable insensitivity of the molecular conversion efficiency with respect to both the details of the microscopic binary collision physics and the coherent nature of the Bose–Einstein condensed gas, provided that the magnetic-field strength is varied linearly. We provide the reasons for this universality of the molecular production achieved by linear ramps of the magnetic-field strength, and identify the Landau–Zener coefficient determined by Mies et al (2000 Phys. Rev. A 61 022721) as the main parameter that controls the efficiency.
Citation
Góral, K., Köhler, T., Gardiner, S., Tiesinga, E., & Julienne, P. (2004). Adiabatic association of ultracold molecules via magnetic-field tunable interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(17), 3457-3500. https://doi.org/10.1088/0953-4075/37/17/006
Journal Article Type | Article |
---|---|
Publication Date | 2004-08 |
Deposit Date | Feb 22, 2008 |
Journal | Journal of Physics B: Atomic, Molecular and Optical Physics |
Print ISSN | 0953-4075 |
Electronic ISSN | 1361-6455 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 37 |
Issue | 17 |
Pages | 3457-3500 |
DOI | https://doi.org/10.1088/0953-4075/37/17/006 |
Keywords | Bose-Einstein condensate, Feshbach resonances, Atomic-collisions, Fermi gas, Scattering, Approximation, Dynamics, System. |
Public URL | https://durham-repository.worktribe.com/output/1605930 |
You might also like
Quantum emission of light with densely packed driven dipoles
(2022)
Journal Article
Roadmap on Atomtronics: State of the art and perspective
(2021)
Journal Article
Collective effects in the photon statistics of thermal atomic ensembles
(2021)
Journal Article
Quantum and nonlinear effects in light transmitted through planar atomic arrays
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search