L. Applegarth
Modular nanometer-scale structuring of gel fibres by sequential self-organization
Applegarth, L.; Clark, N.; Richardson, A. C.; Parker, A. D. M.; Radosavljevic-Evans, I.; Goeta, A. E.; Howard, J. A. K.; Steed, J. W.
Authors
N. Clark
A. C. Richardson
A. D. M. Parker
Professor Ivana Evans ivana.radosavljevic@durham.ac.uk
Professor
A. E. Goeta
Judith Howard j.a.k.howard@durham.ac.uk
Emeritus Professor
Professor Jonathan Steed jon.steed@durham.ac.uk
Professor
Abstract
Ag(I) and Cu(II) complexes of a series of simple bis( urea) ligands form soft metallogels. X-ray crystallographic results suggests that the gels' structure is based on hydrogen bonding to counter anions and thus suggests a route to tunable gel rheological properties.
Citation
Applegarth, L., Clark, N., Richardson, A. C., Parker, A. D. M., Radosavljevic-Evans, I., Goeta, A. E., Howard, J. A. K., & Steed, J. W. (online). Modular nanometer-scale structuring of gel fibres by sequential self-organization. Chemical Communications, 5423-5425
Journal Article Type | Article |
---|---|
Journal | Chemical Communications |
Print ISSN | 1359-7345 |
Electronic ISSN | 1364-548X |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Issue | 43 |
Pages | 5423-5425 |
Public URL | https://durham-repository.worktribe.com/output/1603811 |
You might also like
STING nuclear partners contribute to innate immune signaling responses
(2021)
Journal Article
BBLN-1 is essential for intermediate filament organization and apical membrane morphology
(2021)
Journal Article