L. Karp
Extremal properties of the principal Dirichlet eigenvalue for regular polygons in the hyperbolic plane
Karp, L.; Peyerimhoff, N.
Abstract
We prove that amongst all hyperbolic triangles of equal perimeter or quadrilaterals in a given geodesic ball the regular polygon is the unique minimum for the first Dirichlet eigenvalue. Moreover, we give a geometric description of the set of all hyperbolic triangles with a fixed base and prescribed area.
Citation
Karp, L., & Peyerimhoff, N. (2002). Extremal properties of the principal Dirichlet eigenvalue for regular polygons in the hyperbolic plane. Archiv der Mathematik, 79, 223-231. https://doi.org/10.1007/s00013-002-8308-z
Journal Article Type | Article |
---|---|
Publication Date | 2002 |
Journal | Archiv der Mathematik |
Print ISSN | 0003-889X |
Electronic ISSN | 1420-8938 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 79 |
Pages | 223-231 |
DOI | https://doi.org/10.1007/s00013-002-8308-z |
Public URL | https://durham-repository.worktribe.com/output/1586385 |
You might also like
NP-completeness of the combinatorial distance matrix realisation problem
(2025)
Presentation / Conference Contribution
Bakry-Émery curvature sharpness and curvature flow in finite weighted graphs: theory
(2025)
Journal Article
Sharp Hardy-type inequalities for non-compact harmonic manifolds and Damek–Ricci spaces
(2025)
Journal Article