L. Karp
Extremal properties of the principal Dirichlet eigenvalue for regular polygons in the hyperbolic plane
Karp, L.; Peyerimhoff, N.
Abstract
We prove that amongst all hyperbolic triangles of equal perimeter or quadrilaterals in a given geodesic ball the regular polygon is the unique minimum for the first Dirichlet eigenvalue. Moreover, we give a geometric description of the set of all hyperbolic triangles with a fixed base and prescribed area.
Citation
Karp, L., & Peyerimhoff, N. (2002). Extremal properties of the principal Dirichlet eigenvalue for regular polygons in the hyperbolic plane. Archiv der Mathematik, 79, 223-231. https://doi.org/10.1007/s00013-002-8308-z
Journal Article Type | Article |
---|---|
Publication Date | 2002 |
Journal | Archiv der Mathematik |
Print ISSN | 0003-889X |
Electronic ISSN | 1420-8938 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 79 |
Pages | 223-231 |
DOI | https://doi.org/10.1007/s00013-002-8308-z |
Public URL | https://durham-repository.worktribe.com/output/1586385 |
You might also like
Bakry-Émery curvature sharpness and curvature flow in finite weighted graphs: theory
(2025)
Journal Article
Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms
(2023)
Journal Article
Bakry–Émery Curvature Sharpness and Curvature Flow in Finite Weighted Graphs. Implementation
(2023)
Journal Article