Robert Ferguson r.i.ferguson@durham.ac.uk
Emeritus Professor
Alternative general forms are considered for equations to predict mean velocity over the full range of relative submergence experienced in gravel- and boulder-bed streams. A partial unification is suggested for some previous semiempirical models and physical concepts. Two new equations are proposed: a nondimensional hydraulic geometry equation with different parameters for deep and shallow flows, and a variable-power resistance equation that is asymptotic to roughness-layer formulations for shallow flows and to the Manning-Strickler approximation of the logarithmic friction law for deep flows. Predictions by existing and new equations using D 84 as roughness scale are compared to a compilation of measured velocities in natural streams at relative submergences from 0.1 to over 30. The variable-power equation performs as well as the best existing approach, which is a logarithmic law with roughness multiplier. For predicting how a known or assumed discharge is partitioned between depth and velocity, a nondimensional hydraulic geometry approach outperforms equations using relative submergence. Factor-of-two prediction errors occur with all approaches because of sensitivity to operational definitions of depth, velocity, and slope, the inadequacy of using a single grain-size length scale, and the complexity of flow physics in steep shallow streams.
Ferguson, R. (2007). Flow resistance equations for gravel-and boulder-bed streams. Water Resources Research, 43(5), Article W05427. https://doi.org/10.1029/2006wr005422
Journal Article Type | Article |
---|---|
Publication Date | May 22, 2007 |
Deposit Date | Oct 6, 2008 |
Publicly Available Date | Mar 24, 2010 |
Journal | Water Resources Research |
Print ISSN | 0043-1397 |
Electronic ISSN | 1944-7973 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 43 |
Issue | 5 |
Article Number | W05427 |
DOI | https://doi.org/10.1029/2006wr005422 |
Public URL | https://durham-repository.worktribe.com/output/1572335 |
Published Journal Article
(263 Kb)
PDF
Copyright Statement
Ferguson, R. I, (2007), 'Flow resistance equations for gravel-and boulder-bed streams', Water resources research, 43, 5, W05427, 10.1029/2006WR005422 (DOI). To view the published open abstract, go to https://doi.org and enter the DOI.
Fluvial processes and landforms
(2022)
Journal Article
Roughness Calibration to Improve Flow Predictions in Coarse‐Bed Streams
(2021)
Journal Article
Limits to scale invariance in alluvial rivers
(2020)
Journal Article
Advance, Retreat, and Halt of Abrupt Gravel-Sand Transitions in Alluvial Rivers
(2017)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search