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[1] Alternative general forms are considered for equations to predict mean velocity over
the full range of relative submergence experienced in gravel- and boulder-bed streams. A
partial unification is suggested for some previous semiempirical models and physical
concepts. Two new equations are proposed: a nondimensional hydraulic geometry
equation with different parameters for deep and shallow flows, and a variable-power
resistance equation that is asymptotic to roughness-layer formulations for shallow flows
and to the Manning-Strickler approximation of the logarithmic friction law for deep flows.
Predictions by existing and new equations using Dg4 as roughness scale are compared
to a compilation of measured velocities in natural streams at relative submergences from
0.1 to over 30. The variable-power equation performs as well as the best existing
approach, which is a logarithmic law with roughness multiplier. For predicting how a
known or assumed discharge is partitioned between depth and velocity, a nondimensional
hydraulic geometry approach outperforms equations using relative submergence.
Factor-of-two prediction errors occur with all approaches because of sensitivity to
operational definitions of depth, velocity, and slope, the inadequacy of using a single
grain-size length scale, and the complexity of flow physics in steep shallow streams.
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1. Introduction

[2] Inachannel of known slope and shape, the partitioning
of discharge between depth, velocity, and width depends on
the balance between the downslope component of water
weight and the frictional resistance of the bed. Quantifying
flow resistance is therefore important in flood estimation,
ecological habitat prediction, engineering design, geomor-
phological regime theory, sediment routing models, and other
scientific and practical applications. What is usually needed
is a way to predict resistance from readily observable and
time-invariant channel properties. In large low-gradient
rivers, this can be done tolerably well using sand bed
form geometry or gravel grain size. But a recent review
concluded that [Wohl, 2000, p. 82], “...there is not at
present a well-tested, consistently accurate equation for
calculating the resistance coefficients of mountain rivers.”
This reflects differences in the physical sources of resis-
tance in flows with different relative submergence of the
bed (d/k, where d is the mean flow depth and & is a
representative bed roughness height). At high submergence
(say d/k ~10%), the main source of resistance is skin
friction (form drag on individual particles and viscous
friction on their surfaces), plus any large-scale form
resistance of dunes, bars, or bends. At low submergence
(say d/k <10, and more particularly d/k ~1), which is
characteristic not just of boulder torrents but also small
gravel bed streams at low discharge, form drag associated
with the turbulent wakes of large roughness elements
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becomes relatively greater, and there is also spill loss if flow
is locally supercritical and wave drag on any elements
protruding above the water surface. Several authors have
proposed resistance equations specifically for shallow flows
[e.g., Bathurst, 1978, 1985, 2002; Jarrett, 1984; Rickenmann,
1991; Katul et al., 2002; Smart et al., 2002], but with the
exception of Smart et al. [2002], none was intended to work
also for deeper flows, and if extrapolated to such conditions,
the predicted resistance is usually far too low or high.

[3] This paper examines published empirical relations
and conceptual models as a basis for suggesting generalized
predictive equations for flow resistance or velocity over a
wide range of conditions in streams with beds dominated by
gravel, cobbles, or boulders. It does not address sand-bed
rivers or the effects of submerged vegetation and large
woody debris, but does cover step-pool channels. It is
written in the same spirit as the attempts by Lawrence
[1997] and Katul et al. [2002] to establish connections
between roughness formulations across traditionally distinct
boundary layer types. I propose two new approaches and
compare them with existing approaches in terms of ability
to predict measured velocities in natural streams.

2. Definition and Calculation of Flow Resistance

[4] Flow resistance is defined and quantified by coeffi-
cients in equations which relate cross-sectional average
velocity (V) to mean flow depth (d) and gradient (S = sin 6)
on the assumption that frictional retardation of flow is equal
and opposite to the downslope component of water weight.
The three classic equations are

V = C(dS)"* = (8gdS/f)"* = d**S'2 /n (1)
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where g is the gravitational acceleration and C, f, and n are the
Chézy coefficient, Darcy-Weisbach friction factor, and
Manning’s n, respectively. These are interchangeable via
equation (1), but f'has two advantages. It is nondimensional
and is physically interpretable as a drag coefficient if
resistance is equated with gravitational driving force per unit
bed area and assumed proportional to the square of velocity:

To = puz = pgdS = pV’f /8 (2)

where u,, is the shear velocity. Equations (1) and (2) imply
that

B/ =V fux 3)

and resistance is quantified in this inverse way hereafter.
Bjerklie et al. [2005] proposed V o< d*>S"? as an alternative
to the Manning equation for slope-area discharge estimation
and showed that it provided a good fit to a wide range of
measurements; the calibrated constant in this equation is
effectively a universal resistance coefficient. Other alter-
natives proposed specifically for steep shallow streams are
discussed later.

[s] Accurate determination of f, C, or n at a site
involves measuring ¥V, d, and S as precisely as possible
then substituting their values in equation (1). If flow is not
uniform, S should be the energy slope, incorporating a term
AV ?/2g to account for change in velocity head. For narrow
channels with rough banks, the mean depth is usually
replaced by the hydraulic radius R = A/P, where 4 = wd is
the cross-section area, w is the wetted width, and P is the
wetted perimeter. Calculated resistance values apply to the
discharge at the time and may alter at higher or lower stage, so
for predictive purposes, f(or C or n) has to be estimated from
measurable and invariant properties of the river channel.
Equation (1) can then be used to estimate velocity and
discharge or (with O = wdV) to estimate water depth for
specified discharge and slope and thus predict water level and
mean bed shear stress.

3. Approaches to Estimating Flow Resistance

[6] In deep uniform gravel bed rivers without submerged
vegetation, the dominant source of resistance is skin fric-
tion. Ideally this should be characterized by statistics of the
bed microtopography since the same grain size distribution
can offer greater or lesser resistance to flow depending on
grain packing [e.g., Gomez, 1993]. Smart et al. [2002] and
Aberle and Smart [2003] reported promising results using
the standard deviation o, of bed elevation in a digital
elevation model or dense long profile, but this is seldom
measured. Normally all that is available is a grain size
distribution, from which k& can be equated with or scaled on
a representative diameter D. I therefore focus on this
approach but discuss later the limitations of D as a measure
of roughness. D is variously defined as Ds, (the median),
Dgy (the size such that 84% is finer), or Dyy.

[7] There are two standard ways to estimate flow resis-
tance from grain size. The first, attributed to Strickler,
relates Manning’s n to the 1/6 power of D. This implies

(8/)"* = ai(d/D)"/* (4)
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The constant a; is generally quoted as 6.7 if D5 is used as
roughness scale, or 8.2 using Dg4 or Do, but Parker [1991]
proposed (8/)"? = 8.1(d/2Ds,)""° which effectively reduces
a; to 7.3.

[8] The other main approach, attributed to Keulegan,
integrates the logarithmic law of the wall throughout the
flow depth to obtain

(8//)'"* = (1/r)In(d/ezo) = (1/)In(11d/k) (5)

where k =~ 0.4 is the von Karman constant, e is the root of
natural logarithms, z, is the zero-velocity height, and & =
30z, is the Nikuradse roughness height (originally equated
with Dsq). The constant 11 (=30/e) is for an infinitely wide
flow and increases slightly for other cross-section shapes
[Hey, 1979]; most authors use 12.2 which Keulegan fitted to
data from a trapezoidal flume.

[o] For shallow flows, neither Manning-Strickler nor
Keulegan works well in its original form, but several
modifications and alternatives have been proposed. Jarrett
[1984] suggested that n is estimated better from S and R
than from D. His best fit equation for n is equivalent to
predicting velocity as

V =3.10R*¥ 5% (6)

in SI units. High slope acts here as a surrogate for coarse
bed material. Three other approaches retain D as a predictor:
modified log laws, generalized power laws and nondimen-
sional hydraulic geometry, and roughness-layer models
based on a mixing-layer analogy or the concept of form-
induced stress. I discuss these in turn, then generalize the
nondimensional hydraulic geometry approach and suggest a
new empirical approach using a variable-power equation.

3.1. Modified Logarithmic Laws

[10] Setting £k = Dso in the Keulegan equation gives a
lower bound to resistance in gravel bed rivers and nearly
always overestimates measured velocity [Millar, 1999]. The
general trend of measurements is fitted better by setting k to
some multiple of Dg,4 to allow for small-scale form drag on
protruding clasts. Suggested values of k/Dg4 range from 2.2
to 3.5 [Thompson and Campbell, 1979; Bray, 1979; Hey,
1979; Bathurst, 1985].

[11] Velocity profiles in shallow flows deviate consider-
ably from logarithmic, often having an inflection near the
tops of the roughness elements [Wiberg and Smith, 1991],
but several authors have shown that logarithmic resistance
equations still give adequate predictions. Thompson and
Campbell [1979] proposed a modified Keulegan equation

(8/)2 =2.5(1 — 0.1k /R)In(12R /k) (7)

with k = 4.5Dsq (=2.37Dg4 at their field site). The extra term
allows for drag on large obstacles which partly block the
flow; it becomes significant at R/k < 1. Wiberg and Smith
[1991] calculated the form drag on a distribution of grain
sizes protruding above a plane bed and showed that while
this generated an inflected velocity profile, the bulk flow
properties differed little from equation (5) with k/Dg4 ~ 3.
Smart et al. [2002] and Aberle and Smart [2003] found that
a log law with & scaled on o, gave a good fit to shallow-flow
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measurements in flume experiments with fixed or armored
gravel.

[12] This strand of the literature shows that despite the
known inadequacy of the law of the wall to describe
velocity profiles in shallow flows, equations based on it
work over a wide range of conditions so long as the
roughness height is suitably inflated. Logarithmic equations
are therefore the standard which others have to beat to
become accepted as useful universal resistance laws.

3.2. Generalized Power Laws and Nondimensional
Hydraulic Geometry

[13] The Manning-Strickler relation implies a 1/6 power
relation between (8/f)" and d/k. Keulegan-type logarithmic
equations are also closely approximated by a power law over
any limited range of d/k, but with different exponents for
different ranges: 1/6 for 10 < d/k< 100, 1/2 for 1 <d/k <10,
and 1 for 0.5 < d/k < 2 [Carson and Kirkby, 1972, p. 222].
Several authors have proposed the generalized power law

8/f)* = a(d/k)’ (8)

as a resistance equation, but not surprisingly the best fit
exponent depends on the calibration data. Griffiths [1981]
obtained 0.29 for gravel bed rivers, while Bathurst [2002]
obtained 0.55 and 0.93 for shallow streams of gradient
<0.8% and >0.8%. Smart et al. [2002] presented a model
for head losses past roughness elements which implies
b = 0.5 and showed that it fits rough-bed flume data well.
Flow measurements in step-pool streams with emergent
clasts are best fitted by b ~ 1 [Lee and Ferguson, 2002;
Comiti et al., 2007].

[14] A power law resistance relation is also implicit in the
dimensionally consistent hydraulic geometry equation

v ocg"(e8)"? /K ©)

(where ¢ is the unit discharge Q/w) which Rickenmann
[1991] and Aberle and Smart [2003] suggested for steep
shallow flows on the basis of loose-bed flume experiments.
Substituting ¢ = dVyields V/u, o d/k, corresponding to b =1
in equation (8). Rickenmann used k = Dqy, whereas Aberle
and Smart set k£ = o, and found that equation (9) fitted their
data even better than a log law. Comiti et al. [2007] propose
the nondimensional hydraulic geometry equation

Ve = cq (10)
for step-pool and cascade reaches. Here V, = V/(gDsa)*>,
¢+ = q/(gD34)* which by definition is highly correlated with
relative submergence, and the best fit to a compilation of
step-pool measurements is with m = 0.66. This is a
generalized form of equation (9) without the slope term.
Comiti et al. explored the possible additional influence of
slope but found no clear effect.

[15] Whereas equation (10) omits the slope term from
equation (9), other authors have proposed resistance laws
that are analogous to equation (9) without the roughness
height term. Jarrett’s [1984] equation for » in terms of R
and S implies V o< ¢*45997 and Bjerklie et al.’s [2005]
modified Manning equation is equivalent to ¥ o< ¢°4$ %2,
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3.3. The Roughness Layer

[16] A third strand in the recent literature considers the
sources of resistance in shallow flows and what they imply
for spatially averaged velocity profiles and bulk flow
resistance. The vertical velocity profile over a rough bed
is usually considered to consist of a thin laminar sublayer, a
turbulent boundary layer with logarithmic profile, and an
outer layer which deviates slightly from logarithmic. In
shallow flows, the outer layer is absent and the near-bed
profile deviates from logarithmic within a roughness layer
that extends above the tops of the roughness elements. For
d/k below ~4, the roughness elements affect all levels in the
flow, so there is no boundary layer in the conventional
sense. Lawrence [1997, 2000] proposed a mixing-length
model for flow resistance in overland flow over stony soil,
and Katul et al. [2002] suggested that a shallow stream is
analogous to the mixing layer within airflow through
vegetation or overbank streamflow on vegetated flood-
plains. In these situations, the flow penetrates a porous
array of roughness elements, with reduced mean velocity
because of turbulent eddies generated in and below the shear
layer at the top of the canopy or roughness elements. In a
complementary approach, Gimenez-Curto and Corniero
Lera [1996, 2006] and Nikora et al. [2001, 2004] noted that
double (space as well as time) Reynolds averaging of the
Navier-Stokes equations over an irregular bed introduces
spatial covariance terms which increase bulk flow resistance.
These terms represent form drag on roughness elements and
form-induced stress due to vorticity generated by flow
separation from roughness elements. Gimenez-Curto and
Corniero Lera [1996] proposed that form-induced stress
dominates the bulk resistance in such situations, in what they
termed a “jet regime” as distinct from the rough turbulent
regime with a boundary layer above an essentially planar bed.

[17] Although these authors started from different heuris-
tic models, they mostly reached the same conclusion about
bulk flow resistance in a roughness layer. For partial
inundation (d/k < 1), Lawrence [1997] and Nikora et al.
[2001] proposed that resistance consists mainly of form
drag on roughness elements so that f'o< d and V/u, increases
as the flow becomes even shallower. Lawrence [2000]
subsequently found experimentally that f is near constant
for d < k and is much higher than predicted by form-drag
models, perhaps because of additional resistance from free
surface deformation and wake interference. Nikora et al.
[2004] noted that several alternative velocity profiles can be
justified heuristically. For d/k from 1 to ~4, Lawrence
[1997, 2000], Gimenez-Curto and Corniero Lera [1996,
2006], and Nikora et al. [2001] all assumed a mixing length
that scales with k. This implies a linear resistance relation

(8/1)"* < d/k (11)
The papers of Rickenmann [1991], Lawrence [1997],
Nikora et al. [2001], Aberle and Smart [2003], and
Gimenez-Curto and Corniero [2006] imply a proportion-
ality constant of ~1 to ~4 in equation (11) depending on
the assumptions made about obstacle shape, how £ is
defined in terms of measurable bed properties, and whether
the height of the mixing layer is equated with & or some
multiple of it.
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[18] Katul et al. [2002] suggested that a mean velocity
profile with an inflection at the top of a mixing layer can be
represented by a hyperbolic tangent function. If the thick-
ness of the mixing layer is equated with £, integration of the
profile function gives the flow resistance as

(8/)"? o {1 + (k/d)In[0.65cosh(d/k — 1)]}  (12)
This approach assumes that the length scale of vorticity in
the mixing layer is of the same order as the flow depth and
obstacle height, but equation (12) was considered applicable
throughout the range 0.2 < d/k <7. At d/k ~ 1, it is almost
as steep as equation (11), but the resistance is asymptoti-
cally constant if the equation is extrapolated beyond its
intended range to very low or very high d/k.

4. Synthesis and New Resistance Equations
4.1. Generalized Nondimensional Hydraulic Geometry

[19] The approaches of Aberle and Smart [2003] and
Comiti et al. [2007] can be integrated with each other and
with much previous literature on flow resistance by starting
from the general power law equation (8) and setting k = D:

(8/f)"* =V /ux = a(d/D)" (13)
Writing d = ¢/V and rearranging yields the nondimensional
hydraulic geometry relation
Ve = alf’"S“*'”)/zq',,ﬁ' (14)
in which ¥, and ¢, are defined as in (10) and the exponents b
and m are related by m = (2b + 1)/(2b+3)and b = (3m — 1)/
2(1 — m). This predicts velocity for known slope, grain size,
and unit discharge; depth follows immediately and shear
stress can then be estimated from depth x slope. This
equivalence between power law resistance and nondimen-
sional hydraulic geometry doubtlessly has been worked out
by previous researchers, but I cannot find it in print. Aberle
and Smart [2003] proposed an equation for Vas a product of
powers of g, S, ¢, and D and noted that for dimensional
homogeneity the exponents of g and D are determined by
that of ¢; equation (14) suggests the slope exponent is
also constrained. The particular equations proposed by
Rickenmann [1991] and Aberle and Smart [2003] involve
¢°® which is consistent with m = 0.6 in equation (14) and
b =1 in the power law resistance equation (13); that is, they
are equivalent to the roughness-layer resistance relation (11).
[20] Evidently several different heuristic and empirical
analyses of shallow flows all converge on (8/f)"* o d/D,
suggesting that this can be adopted as a default model for
shallow flows without having to justify any particular
interpretation of the dominant physical processes. This
roughness-layer (RL) relation can be regarded as one end-
member of a range of possible power law resistance
functions for different conditions. The other end-member,
for relatively deep rivers with lower slopes, is the Manning-
Strickler (MS) friction law [equation (4), or b = 1/6 in
equation (13)] which corresponds in equation (14) to m =
0.4 and a slope exponent of 0.3. Thus as attention moves
from steep shallow streams to deeper rivers, the exponent of
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discharge in equation (14) decreases and that of slope
increases.

[21] The neatest way to synthesize the MS and RL end-
members is through a variable-power resistance equation,
which I develop below, but a first approximation is simply
to use MS for “deep” flows and RL for ““shallow” flows,
with “deep” and ““shallow” defined by cutpoints of d/D or
q+. This MS/RL approach has two variants: predict fand V/
us from d/D using equation (13) with » = 1/6 for deep flows
but 1 for shallow flows, or predict V directly from ¢, S, and
D using equation (14) with m = 0.4 for deep flows but 0.6
for shallow flows. It would be possible to use a threefold
division with b = 1/6, 1/2, 1 or m = 0.4, 0.5, 0.6. Using a
simple two-way cut, the prediction equations using relative
submergence are

8/ =V Juy = ay(d/D)"® (deep flows) (15a)

= ayd/D (shallow flows) (15b)
where the previously cited literature suggests a; ~ 7—8 and
a, =~ 1—4. In the second variant, velocity is predicted using

0,4SO,3

_ 06
Vi = a; qx

(deep flows) (16a)

= a)*¢%°S"* (shallow flows) (16b)
with Vy, g4, a1, and a, as previously defined. In testing this
MS/RL approach below, I use D = Dg4, R rather than d, and
define “shallow” flows in equation (15) as R/Dg4 < 4 based
on the previously cited literature. The equivalent cutpoint
for equation (16) is taken as g4, = 2 based on the strong
(since partly spurious) correlation between ¢, and R/Dg4 in
the data set used below.

4.2. A Variable-Power Equation

[22] The alternative synthesis is a function that is asymp-
totic to the MS and RL equations as d/D becomes very large
or very small, respectively. This approach does not appear
to have been considered previously. It treats the Darcy-
Weisbach friction factor f'as a sum of two components, as
done when combining skin friction and bed form effects
[e.g., Yalin, 1992, pp. 13—14]. The Manning-Strickler
equation (4) implies

f/8=(D/d)'""|a} (17)

and the roughness-layer relation (11) implies

f/8=(D/d)* /a5 (18)

Both components are present in coarse-bedded streams but
in varying proportions. Adding them gives

f/8 = (D/d)’ |+ (D/d)' |a}

= (D/d)’|a} + a&3(d/D)*")/a}a; (19)

and therefore

8/f)"* = a1a2(d/D)/[a} + db(d/D)*"*]'"? (20)
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Table 1. Field Data Sets Used to Evaluate Performance of Alternative Flow Resistance Equations®

Channel Number of Number and Type

Source Field Area Morphology Sites of Measurements
Charlton et al. [1978] UK Not stated 23 23 (b, g)
Bathurst [1978] UK Run 3 9 (¢c)
Jarrett [1984] US (CO) Not stated 19 66 (g)
Bathurst [1985] UK Riffle or run 16 41 (c)
Thorne and Zevenbergen [1985] US (CO) Run 2 12 (g)
Hicks and Mason [1991] New Zealand Pool-riffle or run 14 9% (g)
Lee and Ferguson [2002] UK Step-pool 6 70 (s)
MacFarlane and Wohl [2003] US (WA) Step-pool 17 17 (s)
Comiti et al. [in press] Italy Mainly step-pool 10 44 (g, s)

“Notes on measurement methods: (b) data refer to bankfull discharge; (c) discharge by current metering; (g) discharge from

gauging-station rating curve; (s) velocity from salt wave.

This plots as a smooth curve, asymptotic to a 1/6 power
relation at d/D > 1 (when the a7 term in the denominator
becomes negligible) but to a linear relation at d/D < 1 (when
the second term in the denominator becomes negligible; it is
the smaller term even at d/D = 1 since a; > a»). This variable-
power equation (VPE hereafter) provides a single resistance
equation applicable to both shallow and deep flows over
coarse river beds. It quantifies the concept that the dominant
sources of resistance alter as flow becomes shallower, and
avoids forcing a logarithmic resistance law on circumstances
in which velocity profiles are far from logarithmic. A
possible physical rationale is discussed below.

5. Comparison With Field Data

[23] The potential value of the two-part MS/RL equation in
its variants (15) and (16), and the variable-power equation
(20), can be assessed by testing how well they and existing
equations predict measured mean velocity. Velocity, rather
than f or (8/f)"?, is chosen as the variable to be predicted
because f itself is not normally of interest when resistance
equations are used for scientific or practical applications.

5.1.

[24] Data on velocity and the variables needed to predict it
were compiled from the sources listed in Table 1. Criteria for
inclusion of a data set were that (1) it refers to near-straight
reaches of natural streams with gravel/cobble or cobble/
boulder beds and no bedrock or woody debris; (2) field
methods are clearly described or could be ascertained by
asking the authors and appear robust; (3) depth and velocity
are averaged over several cross sections; (4) pebble-count
estimates of Dg, are listed; (5) hydraulic radius is either listed
or calculable as A/(w + d) which is a close approximation for
trapezoidal sections with bank angles of ~45°; and (6) either
energy slopes are listed, or it is clear that flow is sufficiently
close to uniform that listed water surface slopes are a close
approximation to energy slopes. The use of Dg4 as roughness
height, and hydraulic radius rather than mean depth, reflects
dominant practice and therefore data availability. The data
include at-a-site changes in velocity as well as between-site
comparisons. A versatile resistance formulation should be
able to predict both, although Bathurst [1985, 2002] found a
tendency for V/uy to increase faster with R/D at sites than
between sites.

[25] The first six data sets in Table 1 were obtained by
surveying several cross sections in a straight reach to obtain
mean width and depth, surveying slope over a substantial

Selection of Data and Range of Conditions

distance (usually >20 widths), measuring Q by current meter
or from the rating curve for an adjacent gauging station, and
subsequently deriving Vand f. Jarrett [1984] and Hicks and
Mason [1991] listed true energy slopes allowing for nonuni-
form flow, Bathurst [1978, 1985] stated that his listed water
surface slopes are within 5% of the energy slope, and the
other authors stated that their reaches were nearly uniform.
The three most recent data sets are for small step-pool streams
in which Q was measured by gauging structure or salt
dilution, reach-average velocity was measured by salt-wave
traveltime, S was surveyed over the same distance, and a
reach-average depth was obtained as Q/wV or by averaging
measurements at several sections. This procedure does not
yield separate velocity measurements at the start and end of
the reach from which to compute AJF?/g, but this correction
term cannot be significant in step-pool channels with high
slope and low or moderate velocity. A few data points are
omitted: bedrock reaches in MacFarlane and Wohl’s [2003]
data set, measurements which Jarrett and Bathurst [1985]
flagged as overbank flows through dense vegetation, two of
Jarrett’s sites for which Dg, is not available, and those of
Hicks and Mason’s sites for which the quoted uncertainty in
0 exceeds 10%.

[26] The complete data set (N = 376) spans slopes from
0.0007 to 0.21, Dg4 from 0.05 to 0.8 m, relative submergence
R/Dg4 from 0.1 to 26 with one value of 87, and g* from 0.002
to >100. The median Froude number in the entire data set is
only 0.37, but this does not exclude the possibility of local
hydraulic jumps, and five measurements in flood conditions
have a reach-average Froude number in excess of 0.8.

5.2. Predictive Performance of Alternative Equations:
Visual Assessment

[27] Figure 1 shows the correlation between (8/f )1/ 2 and
relative submergence for the data as a whole. Figure lais a
log-log plot which differentiates more clearly in low-sub-
mergence, high-resistance conditions. The scatter in per-
centage terms is perceptibly wider at this end of the plot.
Figure 1b is the traditional semilog plot on which the log
law plots as a straight line. This hides the large relative, but
small absolute, differences in predictions at very low
submergence, and instead emphasizes differences at higher
submergence. The ¢* version of the MS/RL method cannot
be shown in these plots, and nor can the equations of Jarrett
[1984] and Bjerklie et al. [2005], but curves for almost all
other equations are displayed in Figure la and/or 1b to
allow comparison between equations and with the data. The
equations of Rickenmann [1991], Smart et al. [2002], and
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Figure 1. (a) Log-log and (b) semilog plots of (8//)"? (= V/u,) against relative submergence R/Ds,
using all 376 data points from the sources listed in Table 1. Curves show alternative resistance equations,

without calibration to these data.

Katul et al. [2002] are plotted using their authors’ recom-
mended coefficients. The logarithmic equation is plotted
using a constant of 12.2 and k/Dg4 = 3.5, following Hey
[1979]. The Manning-Strickler, MS/RL, and variable-power
equations are plotted using a; = 7.5 which is in the middle
of the range of literature values and a, = 2.36 which gives
smooth matching of the two parts of the MS/RL relation at
the cutpoint R/Dg4 = 4. Improvements in fit after calibration
to the present data are discussed below.

[28] It can be seen from Figure 1 that the 1/6 power
Manning-Strickler equation overestimates velocity in all
conditions, but with recalibration, it could evidently describe
quite well the trend for R/Dg4 > 4. Rickenmann’s [1991] linear
equation parallels the data in the partial-submergence con-
ditions for which it was intended, but its flume-calibrated
constant overestimates velocity in this field data set. The RL
part of MS/RL is parallel to Rickenmann’s equation in
Figure la but offset from it because of the different coeffi-
cient value, as shown by the lower part of the VPE curve.
Bathurst’s [2002] equations are omitted for clarity since they
plot close to Rickenmann at lower values of R/Dg4 and close
to Manning-Strickler at higher submergence; this confirms
Bathurst’s suggestion that they define a lower limit for
resistance (an upper envelope in Figure la). The flume-
calibrated logarithmic equation of Smart et al. [2002] also
plots close to the upper edge of the shallow-flow data, but
nearer the middle of the scatter at higher submergence. Katul
et al.’s [2002] equation fits the general trend well in the range
for which it was intended, but not when extrapolated to deep
or very shallow flows.

[29] The only plotted equations that follow the trend of
the data over most or all of the range are the VPE and the
Hey and Thompson-Campbell logarithmic equations. The
latter are more sharply curved in Figure 1a, predicting lower

resistance than the VPE at intermediate submergence but
very high resistance at low submergence where the general
trend is more nearly tracked by the VPE. The Hey and
Thompson-Campbell relations differ little except at very
low R/Dg4 where the latter declines slightly less steeply. All
logarithmic equations make nonphysical predictions once
R/Dg,4 is so low that the logarithm becomes negative.

[30] In the semilogarithmic plot of Figure 1b, the VPE
has an inflection, rather like Katul et al.’s [2002] relation
but with asymptotes that are sloping not horizontal. Its
visual fit is good despite using uncalibrated values of the
two parameters. The MS/RL relation converges on the VPE
at very low or high submergence; it fits shallow flows well
but is near the upper edge of the scatter at intermediate
submergence.

[31] The nondimensional hydraulic geometry variant of
the MS/RL predictor [equation (16)] can only be illustrated in
a plot of V, against ¢, (Figure 2). This shows the expected
curvature of the data cloud with a perceptibly flatter trend at
higher g,.. Predictions of V;, depend on slope as well as ¢, so
Figure 2 shows prediction envelopes calculated using the
lowest and highest slopes in each half of the data set: 0.0007
and 0.039 for g, > 2, 0.0015 and 0.21 for g4 <2. Despite the
use of uncalibrated values of a; and a,, most of the data
points do fall within the envelopes, the outliers are on both
sides suggesting no major bias, and the precise choice of
cutpoint does not appear to be critical.

5.3. Predictive Performance of Alternative Equations:
Statistical Assessment

[32] The plots of resistance against submergence in
Figure 1 show the differences between equations that can
be plotted in that way, but predictive performance is more
logically considered for velocity as the prediction target. This
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Figure 2. Nondimensional hydraulic geometry plot of V, = V/(gDg4)"? against ¢« = ¢/(gD34)""? for the
same data as in Figures 1a and 1b. Parallel broken lines show the envelopes of predictions by equation (16)
using the Manning-Strickler (MS) equation for g, > 2 and the roughness-layer (RL) equation for g, <2. The
envelopes correspond to the highest and lowest slope values in each half of the data.

also allows comparison with the MS/RL ¢, approach plotted
in Figure 2 and the equations of Jarrett [1984] and Bjerklie
et al. [2005] which do not use D.

[33] Predictive performance can be assessed statistically in
many ways. The metrics used here are root mean square
(RMS) error 5. = [ (V,, — Vao)? /N1 (where Vy and Vi,
denote predicted and measured velocity) and RMS logarith-
mic error sj0, = [y (log V,, — log V.)*/N]'2. The former
assesses typical error in m s~ and therefore emphasizes
errors in predicting faster (usually deeper) flows, whereas
Siog assesses relative error and therefore gives greater weight
to overprediction or underprediction of slow (usually shallow)
flows. I also consider the number of prediction errors that
exceed a factor of 2 (V/Vi, > 2 or <0.5).

[34] Table 2 compares the predictive performance of
selected equations which, according to Figure 1 or the
literature, work over a wide range of conditions and describe
the central trend of field data rather than a minimum-
resistance envelope. The equations of Rickenmann [1991],
Bathurst [2002], Smart et al. [2002], and Katul et al. [2002]
are therefore not considered. The tabulated statistics are for
published values of each equation’s parameters without

calibration to the present data. Hey’s [1979] coefficient
values are used for the logarithmic equation, except that
negative predictions by this and the Thompson-Campbell
equation at very low R/Dg, are replaced by a small positive
number.

[35] The best fit equation in terms of s, is Jarrett’s, closely
followed by Hey’s and the new VPE and ¢* relations.
However, Jarrett’s equation has fairly high s;,, and many
factor-of-2 overpredictions; inspection shows that it predicts
high velocities well but overestimates all 71 measured
velocities below 0.2 m s~ '. The modified Manning equation
of Bjerklie et al. [2005] has the same bias, but more so, and
the highest s.. In terms of percentage error, the new g¢*
equation is by far the best, then VPE and MS/RL, with the
logarithmic equations performing rather poorly.

[36] Table 3 shows the improvement in predictive ability
when selected equations are calibrated to minimize either s,
or sj,¢. The equations using R and S are not shown because
they continue to have higher s,,, than others and systematic
bias at low velocities. The Thompson-Campbell equation is
also omitted since after calibration, its blockage coefficient
is almost zero and the equation converges on the simple

Table 2. Ability of Alternative Resistance Equations to Predict Measured Velocity in Combined Data Set
Summarized in Table 1 (N = 376), Without Calibration to These Data

RMS Error RMS Error Number of Very
Equation in¥V,ms"! in Log V' High/Low Predictions
Jarrett [1984]; equation (6) here 0.41 0.35 84/2
Bjerklie et al. [2005] 0.62 0.48 118/7
Logarithmic® 0.43 0.53 31/84
Thompson and Campbell [1979]" 0.46 0.44 45/57
VPE [equation (20)] 0.43 0.29 41/26
MS/RL using R/Dg4 [equation (15)] 0.50 0.30 46/21
MS/RL using ¢* [equation (16)] 0.43 0.17 14/16

predictions below 0.01 m s~ ' replaced by that value.
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Table 3. Ability of Selected Resistance Equations to Predict Measured Velocity in Combined Data Set

Summarized in Table 1, After Calibration to These Data

Calibrated Parameter =~ RMS Error in ~ RMS Error in ~ Number of Very High/
Equation Values V,ms™! Log V Low Predictions

Logarithmic® m=4.5, Viin = 0.25 0.39 0.29 60/20

m = 3.8, Viyn = 0.14 0.40 0.27 41/37

m=4, Viin =02 0.40 028 53/22
VPE [equation (20)] ay, a; =6.1,2.4 0.40 0.29 40/28

ay, a, =7.3,23 0.42 0.29 39/33

ay, a, = 6.5,2.5 0.40 0.29 42/24
MS/RL using R/Dg4 [equation (15)]  ay, a, = 5.3, 2.1 0.40 0.29 38/38

ay, ay =5.5,2.2 0.40 0.29 38/31

ay, ay =5.5,2.2 0.40 0.29 38/31
MS/RL using gx [equation (16)] ay, a, =4.8,2.5 0.34 0.16 12/17

ay, ay =5.7,2.6 0.35 0.16 12/15

ay, ap =5.5,2.5 0.35 0.16 12/17

*Predictions below Vi, replaced by that value.

Underlined RMS errors are those minimized by the parameter values shown. Third row for each equation gives suggested
round-number parameter set giving near-optimal fit to both 7 and log V.

logarithmic equation. The percentage error of the latter is
much improved by introducing a minimum velocity predic-
tion of ~0.2 ms™ "' and increasing k/Dg, slightly to ~4. The
fits of the three new equations are improved by reducing a,
to 5—6 (MS/RL and ¢*) or 6—7 (VPE). After these changes,
the g* approach emerges as by far the best predictor
whichever criterion is used. Of the approaches using relative
submergence, the logarithmic equation has the lowest RMS
errors, but VPE and MS/RL are only marginally inferior and
the VPE gives slightly fewer factor-of-2 errors than the
others.

[37] The equation which does best overall in this statistical
comparison is thus the g« version of the MS/RL approach,
followed by two relative-submergence equations: logarith-
mic with a positive lower limit to predicted velocity and an
inflated k/Dg,4 on the lines of Bray [1979] and Hey [1979],
and the new variable-power equation. The patterns of pre-
diction error for these equations are illustrated in Figure 3
using round-number parameter values that are near-optimal
for both s, and s0 (Table 2). Each plot has a dense cloud of

105

predicted V (m's)

0.m — Tt

001 +————rm

data points along the 1:1 line, showing good agreement of
each equation with much of the data, but with some points
well off the line. The scatter is visibly less for the g« equation
than for the equations using R/Dgy, in accordance with the
values of s}, in Table 3. Computing s. and sy, separately for
the RL and MS domains in Figure 3¢ reveals that s, is much
higher for the MS domain, in which velocities tend to be
higher, but s, is slightly higher in the RL domain. Most of
the biggest prediction errors in all three plots relate to a single
site indicated by a distinctive symbol in Figure 3. This is site
GB of Lee and Ferguson [2002], which is a very steep (S =
0.18) and coarse (Dg4 = 0.78 m, Dpax = 2.7 m) step-pool
reach in which the nine lowest discharges were a mere trickle
between boulders. Just why all equations fail on this site is
unclear, but omitting it improves the error statistics of every
equation, particularly the VPE which now has the same s. as
the logarithmic equation and an appreciably lower so,. This
can be understood by inspecting Figure 1a in which the nine
low-flow measurements at site GB form the isolated cluster
of points with (8/f)""> <0.1. The downturn of the logarithmic

0.m 01 1 10

o1
reasured V (m's) o

0.1 1
measured V (mis)

10 0o 0.1 1 10
rreasured V (mf's)

Figure 3. Patterns of velocity prediction error for different resistance equations: (a) logarithmic with
kIDgs = 4 and low or negative predictions increased to 0.2 m s '; (b) proposed variable-power
equation using a; = 6.5, a, = 2.5; (c) gx version of proposed MS/RL approach using a; = 5.5, a, =
2.5. The A symbol is used for data points from site GB of Lee and Ferguson [2002].
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curve at low R/Dg, takes it close to these points but system-
atically away from the main trend of the data.

6. Discussion

[38] A cautious conclusion to this paper would be that little
has changed since Wohl/ [2000] made her pessimistic assess-
ment of equations for calculating flow resistance in mountain
rivers. Figure 1 shows that some resistance equations track
field data well within a limited range of submergence but are
not universal, and others approximately define the minimum-
resistance envelope of the data, but few follow the central
trend in a more or less unbiased way over the full range of
submergence. Moreover, the scatter in the data plots is very
wide, so even if a resistance equation is approximately
unbiased, it will be subject to considerable predictive
uncertainty. In this study, all submergence-based equations
get the measured velocity wrong by more than a factor of 2
in at least 15% of cases, although the g*-based approach
reduces this below 8% for reasons which will be discussed
later. Big relative errors are most frequent in conditions of
partial submergence (R/Dg4 < 1) which is common during
low flow in steep streams. Prediction errors for faster-
flowing rivers, or small streams at times of flood, are
smaller in relative terms but still frustratingly large in
absolute terms.

[39] Accurate prediction of mean velocity in gravel- and
boulder-bed streams is difficult for two kinds of reason:
practical difficulties in measuring the bed and flow proper-
ties used to calibrate or apply resistance equations, and
theoretical limitations on how well it is possible to
predict reach-average velocity using very simple equa-
tions. Practical problems can in principle be overcome,
but the theoretical issues imply that predictions can
never be perfect. I consider the practical problems first,
then the theoretical limitations of any simple approach,
and finally suggest implications for practice and future
research.

6.1.

[40] Uncertainties in input data lead to uncertainties in
predictions no matter how good the resistance equation
used. The large scatter in Figure 1 may partly reflect
measurement errors in the nondimensional variables on
one or both axes. Calculation of fand d/D requires values
of d, D, S, and V and each is subject to error. As noted
above, the slope used to calculate f is ideally the energy
slope; using the water-surface slope or mean bed slope can
introduce bias if there is substantial flow nonuniformity
[Jarrett, 1984; Hicks and Mason, 1991]. This source of
uncertainty is potentially most serious for fast low-gradient
flows, i.e., high d/D. The shortage of data points at
submergences much above 10 in Figure 1 is because
few data sets are explicit about uniformity or velocity
head.

[41] Significant measurement errors in variables other
than slope are most likely at low d/D, which is where
Figure 1 shows greatest scatter. The definitions of flow
depth and other geometric variables are obvious in rigid-bed
flumes but become increasingly fuzzy in steep natural
channels. The absolute precision of cross-section surveys
decreases with increasing bed grain size (or rather o), and
coarser beds are often associated with shallower flow, so

Susceptibility to Measurement Error
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that the relative precision of an estimate of d or R becomes
even lower. Estimating V" and Q from current-meter meas-
urements is also increasingly unreliable the lower the
relative submergence. Most recent studies of step-pool
channels have avoided this problem by estimating reach-
average mean velocity from salt-wave traveltime between
two sites, and some have estimated reach-average depth as
d = Q/wV with w averaged over numerous cross sections,
but Lee and Ferguson [2002] showed by error propagation
analysis that (8//)"" in their step-pool reaches still had an
uncertainty of +17%. Grain size measurement is also
more difficult for boulder beds: The random-pacing
method of pebble counting becomes impossible, the grid
method becomes harder, and grains are too heavy to lift
for measurement. In step-pool systems, there is also the
question of whether to use a reach-average grain size or
one for the steps which contribute most of the flow
resistance. The uncertainty of estimates of Dg4 in such
streams is at least £10% and probably +£20%. If one adds
an uncertainty of at least 10% in d or R, horizontal
plotting positions in Figure 1 could be out by half a log
cycle.

[42] Robustness to measurement error is probably a factor
in the superior predictive performance of the MS/RL
approach using g* [equations (16a) and (16b)] compared
to the same approach using R/Dg4 [equations (15a) and
(15b)]. In Figure 3c, using gx, any error in Dgs, O, or V
affects both observed and predicted velocity so that the data
point moves almost parallel to the 1:1 line. But when
predictions are made using R/Dgy, error in any one input
variable affects either predicted or measured velocity, not
both, so tends to increase the scatter.

6.2. Theoretical Limitations

[43] Even with uniform flow and accurate measurements,
the predictive ability of simple flow resistance equations is
limited by two key assumptions which can be challenged
on theoretical grounds. One is that total resistance to flow
can be parameterized by a small-scale property of the bed,
such as Dgy; the other is that, for a given bed roughness,
there is a unique relation between mean depth and mean
velocity.

[44] The assumption that the roughness height in the log
law can be equated with a grain size percentile goes back to
Nikuradse’s classic experiments with roughened pipes. It is
accepted as valid for well-sorted sediment without bed
forms, but few gravel- or boulder-bed rivers are like this.
Grain size distributions are typically wide, so individual
large clasts can protrude into the flow and groups of them
can form clusters, polygons, or steps. Skin resistance is then
supplemented by small-scale form drag and possibly also
spill losses, so that the log law and its 1/6 power approx-
imation overpredict velocity unless k/Dg, is increased in the
former and a reduced in the latter. Calculations of the
combined form drag on clasts of different size protruding
above a plane bed [Wiberg and Smith, 1991] give a similar
k/Dg4 ratio to the curve fitting of Bray [1979], Hey [1979],
and subsequent workers, but as pointed out by Smart et al.
[2002], &k should really be scaled on statistics of bed
microtopography rather than grain size if drag is the main
source of resistance. Microtopography is considered explic-
itly by authors proposing versions of what I have termed the
roughness-layer equation. Lawrence [2000], Nikora et al.
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[2001], and Gimenez-Curto and Corniero [2006] all as-
sumed that characteristic obstacle height must scale with
characteristic grain size, but the precise scaling depends on
what is assumed about obstacle shape which tends to be far
more variable in river beds than in the better-studied case of
plant stems. It is now possible to measure the microtopog-
raphy of river beds to high resolution by digital photogram-
metry and of exposed parts to even higher resolution by
laser scanning, but it remains unclear whether a single
statistic like o, can adequately characterize roughness.
Furthermore, in streams with step-pool or bar-pool-riftle
morphology, there are two distinct scales of topographic
variability. A grain-size-based roughness length will tend
to underestimate total flow resistance in such situations,
the best choice of topographic roughness length is unclear,
and a way to use two length scales may need to be
devised. Large woody debris adds further resistance which
is difficult to separate from other sources [Wilcox et al.,
2006].

[45] The other problem, about nonuniqueness of the
depth-velocity relation, is more subtle and applies whether
bed roughness is characterized by a grain size or a topo-
graphic statistic. It can be understood by considering the
three-dimensional spatial variability of velocity within the
control volume for which a grand mean velocity is to be
predicted. The first issue is that any universal relation
between local depth d and local vertically averaged velocity
V' is likely to be nonlinear, so substituting the mean of a
spatially variable depth into it will give a biased estimate of
the spatially averaged mean velocity. More fundamentally, it
is unlikely that any single relation does exist between d and
V if there is a combination of skin and drag resistance (I am
indebted to a reviewer for this insight and suggestions about
how to develop it). In a Reynolds-averaged formulation of
uniform flow in a bed-parallel slice at height z, the gravity
driving force per unit mass of water is balanced by a
combination of turbulent shear and drag on any obstacles
present at that height:

ouw

&s 0z

+0.5CpA|U|U (21)

where U is the time-averaged velocity, ’ is the instantaneous
deviation from U, w' is the instantaneous vertical velocity, the
overbar denotes time averaging, 4 is the frontal area of
obstacles per unit mass of water, and Cp is a drag
coefficient. This is a simplified version of equation (1) in
the study by Nikora et al. [2004] and is equivalent to
equation (2) in Poggi et al.’s [2004] paper on turbulence in
intermediate-density canopy flow. The turbulent shear term
is most easily related to the mean flow by Prandtl’s
hypothesis

ou

0z

ou
0z

uw = —P2 (22)

where / is an eddy mixing length. If the turbulence term in
equation (21) is small compared to the drag term, the
value of U for a given slope depends only on obstacle
characteristics, but when turbulent shear is significant, the
solution for U from equations (21) and (22) depends on /
as well as 4 and Cp. Mixing length varies with height and
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not necessarily in a universal way. Poggi et al. [2004]
proposed that flow above a canopy approximates a
conventional boundary layer with / proportional to height
above the canopy, flow within the canopy is dominated by
Karman streets with eddy length independent of height, and
flow near the canopy top is essentially a Kelvin-Helmholtz
shear layer with / controlled by U and its gradient. For a
given roughness height, any one of these scalings implies a
particular time-average vertical velocity profile which
when integrated gives a particular relation between d and
V. Thus [ = kz at all heights implies dV/dd oc d~ "%, V
d"?, and a constant value of (8/f)"%, whereas [ = constant
implies dV/dd o d"?, V o d*2, and (8/f)"? & d which is
the roughness-layer equation. The 1/6 power approximation
of the log law falls between these extremes with ¥ oc &> and
the log law itself is close to this. A 1/2 power law [Smart et
al., 2002] would give a linear velocity profile, and there are
endless other possibilities. For shallow flows in which there
are two or more mixing length regimes, as suggested by
Nikora et al. [2004] and Poggi et al. [2004], the vertical velocity
profile will be more complicated than is implied by any power
law with a fixed exponent. This suggests that there is some
physical basis for the variable-power equation proposed in this
paper, in which the power used to relate 7 to d alters according
to d/k. Another possible way to deal with this situation is to
treat V' as a weighted average of the mean velocities in each of
two layers, computed using different relations (Canovaro and
Solari, poster presented at 6th International Workshop on
Gravel-Bed Rivers, September 2005).

6.3. Conclusions

[46] The foregoing discussion has suggested both practical
and theoretical reasons why simple flow resistance equations
do not give precise predictions of mean velocity. There is a
clear need for further research directed toward identifying
effective topographic indices of resistance, and for detailed
flow and turbulence measurements in streams or self-
formed laboratory channels to help elucidate the physics
of shallow flows over irregular beds. Yet there will surely
continue to be a role for simple flow resistance equations
that can be used for generic calculations or practical
applications, so it is relevant to ask which equations are
most reliable and versatile for predicting resistance and
velocity in relatively shallow streams. Some clear and
moderately optimistic conclusions can be reached about
this.

[47] The longstanding and widely used Keulegan approach
to flow resistance and velocity prediction, based on integrat-
ing the logarithmic law of the wall, predicts velocity at least
as well as existing alternative equations even in conditions
where a full-depth logarithmic velocity profile is unrealistic.
This empirical adequacy is achieved by setting the roughness
height k to a substantial multiple of Dg4 and replacing near-
zero or negative predictions at very low submergence by a
small positive value. The best fit value of k/Dg4 for the
present data compilation is ~4, just a little higher than Hey’s
[1979] value of 3.5.

[48] Two new approaches developed in this paper also
predict velocity fairly well at any relative submergence.
Each assumes that in very shallow flows (8/f)"? (or equiv-
alently V/u*) increases linearly with relative submergence in
what I term the roughness-layer relation [RL; equation (11)],
whereas in deep flows, an approximately logarithmic rela-
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tion holds which can be described by the 1/6 power
Manning-Strickler relation [MS; equation (4)]. The variable-
power equation [VPE; equation (20)] with RL and MS as
asymptotes fits the data compilation as well as any existing
resistance law. It is not derived from a rigorous physical
analysis, but nothing about it is incompatible with known
physics. There are precedents for the concept of additive
sources of resistance; the low-submergence asymptote shares
the heuristic basis of the mixing-length and jet-regime
approaches; the other asymptote is a close approximation of
the log law for the deep flows in which it is physically
plausible; and a gradual shift from one to the other is what
would be expected from likely vertical changes in turbulent
eddy scales in flows which have a boundary layer above a
roughness layer. The variable-power equation may therefore
be a useful tool for anyone wanting to predict velocity by a
single equation over a wide range of conditions. The best fit
to the present data compilation was obtained by reducing the
MS coefficient a; by about 20% from its traditional value,
although predictions using the latter are at least as good as
those by other equations with default coefficients. A reduc-
tion in @; has the same effect as an increase in k/Dgy in the
generalized log law, and the need for both of these adjustments
probably has a common cause in form drag on protruding
clasts in poorly sorted riverbeds. The optimum value of the
RL coefficient a, is within the range suggested by Nikora et
al. [2001] and close to what Gimenez-Curto and Corniero
[2006] suggested.

[49] The other new approach is based on a general
nondimensional hydraulic geometry relation that includes
many previous resistance laws as special cases. The sim-
plest way to apply it is to use either of two specific versions,
equivalent to the MS and RL relations, according to the
value of the nondimensional unit discharge g« = g/(gD*)*".
This MS/RL approach using ¢* has by far the lowest
velocity prediction error of any of the methods tested. It
cannot be used to estimate discharge for a given depth (for
example, bankfull), but it can be used to partition a known or
assumed discharge between depth and velocity when slope
and grain size are known. This situation often arises in
ecological and geomorphological applications. The way in
which width changes with discharge must be known, but that
is no more restrictive than the need to know how depth alters
with discharge if using d/D to predict V in the same type of
situation, and there is the advantage that width can usually be
measured more precisely and easily than depth. One reason
why ¢* is a better predictor than d/D is probably its lesser
sensitivity to measurement error, as already discussed, but
there is another. In gravel bed rivers with significant macro-
scale form resistance associated with bars or bends, and in
step-pool boulder torrents with significant spill resistance,
Vis lower and d higher than would be expected based on skin
resistance only. The increased depth means that a resistance
equation using d/D predicts high, not low, velocity unless
ky/Dyg4 is set to a very high multiple [e.g., Millar, 1999]. But in
the hydraulic geometry approach, using unit discharge g =dV’
as predictor, the effects of large-scale resistance on depth and
velocity cancel out and there is no overall bias.
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