H. Jiang
ArnHF van der Waals clusters revisited: II. Energetics and HF vibrational frequency shifts from diffusion Monte Carlo calculations on additive and nonadditive potential-energy surfaces for n=1-12
Jiang, H.; Xu, M. Z.; Hutson, J. M.; Bačić, Z.
Abstract
The ground-state energies and HF vibrational frequency shifts of ArnHF clusters have been calculated on the nonadditive potential-energysurfaces (PESs) for n=2-7 and on the pairwise-additive PESs for the clusters with n=1-12, using the diffusionMonte Carlo (DMC) method. For n>3, the calculations have been performed for the lowest-energy isomer and several higher-lying isomers which are the closest in energy. They provide information about the isomer dependence of the HF redshift, and enable direct comparison with the experimental data recently obtained in helium nanodroplets. The agreement between theory and experiment is excellent, in particular, for the nonadditive DMC redshifts. The relative, incremental redshifts are reproduced accurately even at the lower level of theory, i.e., the DMC and quantum five-dimensional (rigid Arn) calculations on the pairwise-additive PESs. The nonadditive interactions make a significant contribution to the frequency shift, on the order of 10%–12%, and have to be included in the PESs in order for the theory to yield accurate magnitude of the HF redshift. The energy gaps between the DMC ground states of the cluster isomers are very different from the energy separation of their respective minima on the PES, due to the considerable variations in the intermolecular zero-point energy of different ArnHF isomers.
Citation
Jiang, H., Xu, M. Z., Hutson, J. M., & Bačić, Z. (2005). ArnHF van der Waals clusters revisited: II. Energetics and HF vibrational frequency shifts from diffusion Monte Carlo calculations on additive and nonadditive potential-energy surfaces for n=1-12. The Journal of Chemical Physics, 123(5), Article 054305. https://doi.org/10.1063/1.1991856
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 9, 2005 |
Publication Date | Aug 1, 2005 |
Deposit Date | Aug 19, 2015 |
Publicly Available Date | Aug 19, 2015 |
Journal | Journal of Chemical Physics |
Print ISSN | 0021-9606 |
Electronic ISSN | 1089-7690 |
Publisher | American Institute of Physics |
Peer Reviewed | Peer Reviewed |
Volume | 123 |
Issue | 5 |
Article Number | 054305 |
DOI | https://doi.org/10.1063/1.1991856 |
Public URL | https://durham-repository.worktribe.com/output/1569706 |
Files
Published Journal Article
(509 Kb)
PDF
Copyright Statement
© 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in The Journal of Chemical Physics 123, 054305 (2005) and may be found at http://dx.doi.org/10.1063/1.1991856
You might also like
Roger E. Miller (obituary)
(2006)
Other
An Introduction to the Dynamics of Van der Waals Molecules
(1991)
Journal Article
Pinpointing Feshbach resonances and testing Efimov universalities in 39K
(2023)
Journal Article
Formation of Ultracold Molecules by Merging Optical Tweezers
(2023)
Journal Article
Interaction potential for NaCs for ultracold scattering and spectroscopy
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search