Professor Norbert Peyerimhoff norbert.peyerimhoff@durham.ac.uk
Professor
Simplices of maximal volume or minimal total edge length in hyperbolic space
Peyerimhoff, N.
Authors
Abstract
This article is mainly concerned with simplices in n-dimensional hyperbolic space. The main tool is a hyperbolic version of Steiner symmetrization. Our main results are: (A) Let T be the set of all hyperbolic n-simplices in a given closed ball B. A simplex in T is of maximal volume if and only if it is regular and if its vertices are contained in the boundary of B. (B) A hyperbolic simplex is of maximal volume if and only if it is regular and ideal. (C) Let T denote the set of all finite hyperbolic simplices with inradius r. A simplex in T has minimal total edge length if and only if it is regular. (D) Let T denote the set of all finite hyperbolic simplices of volume V. A simplex in T has minimal total edge length if and only if it is regular.
Citation
Peyerimhoff, N. (2002). Simplices of maximal volume or minimal total edge length in hyperbolic space. Journal of the London Mathematical Society, 66(3), 753-768. https://doi.org/10.1112/s0024610702003629
Journal Article Type | Article |
---|---|
Online Publication Date | Oct 1, 2002 |
Publication Date | Oct 1, 2002 |
Deposit Date | Apr 27, 2007 |
Journal | Journal of the London Mathematical Society |
Print ISSN | 0024-6107 |
Electronic ISSN | 1469-7750 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 66 |
Issue | 3 |
Pages | 753-768 |
DOI | https://doi.org/10.1112/s0024610702003629 |
Keywords | Constant curvature. |
Public URL | https://durham-repository.worktribe.com/output/1567511 |
You might also like
Mathematik in Anwendung mit C++
(1994)
Book
Parameterized Counting and Cayley Graph Expanders
(2023)
Journal Article
Going round in circles: Geometry in the early years
(2023)
Journal Article
Bakry-Émery curvature on graphs as an eigenvalue problem
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search