J. Bruinier
Traces of CM values of modular functions
Bruinier, J.; Funke, J.
Abstract
Zagier proved that the traces of singular moduli, i.e., the sums of the values of the classical j-invariant over quadratic irrationalities, are the Fourier coefficients of a modular form of weight 3/2 with poles at the cusps. Using the theta correspondence, we generalize this result to traces of CM values of (weakly holomorphic) modular functions on modular curves of arbitrary genus. We also study the theta lift for the weight 0 Eisenstein series for SL2() and realize a certain generating series of arithmetic intersection numbers as the derivative of Zagier's Eisenstein series of weight 3/2. This recovers a result of Kudla, Rapoport and Yang.
Citation
Bruinier, J., & Funke, J. (2006). Traces of CM values of modular functions. Journal für die reine und angewandte Mathematik, 594, 1-33. https://doi.org/10.1515/crelle.2006.034
Journal Article Type | Article |
---|---|
Publication Date | May 1, 2006 |
Deposit Date | Feb 16, 2009 |
Publicly Available Date | Mar 18, 2014 |
Journal | Journal für die reine und angewandte Mathematik |
Print ISSN | 0075-4102 |
Electronic ISSN | 1435-5345 |
Publisher | De Gruyter |
Peer Reviewed | Peer Reviewed |
Volume | 594 |
Pages | 1-33 |
DOI | https://doi.org/10.1515/crelle.2006.034 |
Public URL | https://durham-repository.worktribe.com/output/1566395 |
Files
Published Journal Article
(316 Kb)
PDF
You might also like
The construction of Green currents and singular theta lifts for unitary groups
(2021)
Journal Article
On some incomplete theta integrals
(2019)
Journal Article
Mock modular forms and geometric theta functions for indefinite quadratic forms
(2017)
Journal Article
Modularity of generating series of winding numbers
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search