Skip to main content

Research Repository

Advanced Search

Traces of CM values of modular functions

Bruinier, J.; Funke, J.

Traces of CM values of modular functions Thumbnail


Authors

J. Bruinier



Abstract

Zagier proved that the traces of singular moduli, i.e., the sums of the values of the classical j-invariant over quadratic irrationalities, are the Fourier coefficients of a modular form of weight 3/2 with poles at the cusps. Using the theta correspondence, we generalize this result to traces of CM values of (weakly holomorphic) modular functions on modular curves of arbitrary genus. We also study the theta lift for the weight 0 Eisenstein series for SL2() and realize a certain generating series of arithmetic intersection numbers as the derivative of Zagier's Eisenstein series of weight 3/2. This recovers a result of Kudla, Rapoport and Yang.

Citation

Bruinier, J., & Funke, J. (2006). Traces of CM values of modular functions. Journal für die reine und angewandte Mathematik, 594, 1-33. https://doi.org/10.1515/crelle.2006.034

Journal Article Type Article
Publication Date May 1, 2006
Deposit Date Feb 16, 2009
Publicly Available Date Mar 18, 2014
Journal Journal für die reine und angewandte Mathematik
Print ISSN 0075-4102
Electronic ISSN 1435-5345
Publisher De Gruyter
Peer Reviewed Peer Reviewed
Volume 594
Pages 1-33
DOI https://doi.org/10.1515/crelle.2006.034
Public URL https://durham-repository.worktribe.com/output/1566395

Files





You might also like



Downloadable Citations